1
|
Xiong Y, Zhao F, Li Y, Wu Q, Xiao H, Cao S, Yang X, Gao K, Jiang Z, Hu S, Wang L. Impact of Low-Dose Amino Acid-Chelated Trace Minerals on Performance, Antioxidant Capacity, and Fecal Excretion in Growing-Finishing Pigs. Animals (Basel) 2025; 15:1213. [PMID: 40362028 PMCID: PMC12071061 DOI: 10.3390/ani15091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Our previous study has shown that replacing 100% inorganic trace minerals with 30% amino acid-chelated ones can enhance antioxidant capacity, improve nutrient digestibility, and reduce fecal excretion in growing-finishing pigs without compromising performance. This study aimed to further reduce the amino acid-chelated trace minerals content in pig diets and assess its impact. Seventy-two growing-finishing barrows (Duroc × Landrace × Yorkshire), with an initial average body weight of 67.04 ± 0.12 kg, were divided into four groups: negative control (NC, no additional trace minerals), high-dose inorganic trace minerals (HITM, 100% inorganic; 75 mg/kg Fe, 10 mg/kg Cu, 65 mg/kg Zn, 25 mg/kg Mn), and two low-dose groups (15 mg/kg Fe, 4 mg/kg Cu, 12.5 mg/kg Zn, 5 mg/kg Mn) receiving either inorganic sulfates (LITM) or amino acid-chelates (LOTM). The trial concluded when the body weight of pigs reached ~130 kg. Results showed that low-dose trace mineral substitution did not adversely affect growth performance, carcass traits, meat quality, or nutrient digestibility in growing-finishing pigs (p > 0.05). The LOTM pigs exhibited significantly higher serum glutathione peroxidase, liver total superoxide dismutase (T-SOD), and CuZn-SOD activities, muscle CuZn-SOD and catalase activities, and lower liver malondialdehyde content compared with LITM (p < 0.05). Muscle CuZn-SOD in LITM was lower than HITM (p < 0.05), but not in LOTM (p > 0.05). LOTM showed significantly higher muscle Fe content and lower muscle Mn content compared with HITM (p < 0.05), yet its muscle Mn level was higher than that of LITM (p < 0.05). Liver Zn content decreased in LITM compared with HITM (p < 0.05), but remained unchanged in LOTM (p > 0.05). Both LITM and LOTM significantly reduced fecal emissions of Fe, Cu, Zn, and Mn compared with HITM (p < 0.05), with greater reductions in Cu, Zn, and Mn in LOTM. In conclusion, low-dose substitution of inorganic or organic trace minerals did not negatively affect growth, carcass traits, meat quality, or nutrient digestibility in growing-finishing pigs, while it effectively reduced fecal heavy metal emissions. Organic trace minerals were more effective in enhancing antioxidant activity and trace mineral deposition.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Fei Zhao
- DeBon Bio-Tech Co., Ltd., Hengyang 421500, China;
| | - Yaojie Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Qiwen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Huaqin Xiao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Shuting Cao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Xuefen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Kaiguo Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Shenglan Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| | - Li Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.X.); (Y.L.); (Q.W.); (H.X.); (S.C.); (X.Y.); (K.G.); (Z.J.)
| |
Collapse
|
2
|
Huang F, Wang Q, Wang Z, Lv L, Feng J. Effects of Organic Zinc on the Growth Performance of Weanling Pigs: A Meta-analysis. Biol Trace Elem Res 2024; 202:5051-5060. [PMID: 38253801 DOI: 10.1007/s12011-024-04070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Supplementation of feed with organic zinc (Zn) has long been discussed as an alternative to inorganic Zn in pigs, but its effects on growth performance are mixed. This meta-analysis was conducted to provide a comprehensive evaluation of the influence of organic Zn on the growth performance of weanling pigs, on the basis of average daily gain (ADG), average daily feed intake (ADFI), and feed to gain ratio (F/G). We screened the PubMed and Web of Science databases (published before December 31, 2022; limited to English) systematically and contrasted organic Zn supplementation with inorganic Zn supplementation. There were 680 retrievals of studies, of which 16 (1389 pigs, 37 records) were eligible to analyze. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated using a random-effects model. The subgroup analysis was classified as organic Zn source (Zn-amino acid (Zn-AA), Zn-glycine (Zn-Gly), Zn-methionine (Zn-Met), Zn-Lysine (Zn-Lys), proteinate complex Zn (Zn-Pro), chitosan-Zn (Zn-CS) or Zn-lactate (Zn-Lac)) and Zn additive dose (low, medium, or high, i.e., lower than, equal to or higher than the requirement of NRC). Organic Zn addition in the weaning phase increased the ADG (P < 0.001) and the ADFI (P = 0.023) and decreased the F/G (P < 0.001). Specifically, for the organic sources, only Zn-CS supplementation presented significant effects on the ADG (P < 0.001), ADFI (P = 0.011), and F/G (P < 0.001). Moreover, medium-dose organic Zn supplementation had positive effects on ADG (P = 0.012), ADFI (P = 0.018), and F/G (P < 0.001). Our results indicate that organic Zn added to diets greatly improves the growth performance of weanling pigs.
Collapse
Affiliation(s)
- Feifei Huang
- Key Laboratory of Animal Nutrition and Feed Sciences of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiwen Wang
- Key Laboratory of Animal Nutrition and Feed Sciences of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhonghang Wang
- Key Laboratory of Animal Nutrition and Feed Sciences of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, 310058, China
| | - Liangkang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Feng
- Key Laboratory of Animal Nutrition and Feed Sciences of Zhejiang Province, College of Animal Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Shi Y, Hao R, Ji H, Gao L, Yang J. Dietary zinc supplements: beneficial health effects and application in food, medicine and animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5660-5674. [PMID: 38415843 DOI: 10.1002/jsfa.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Zinc, a crucial trace element is vital for the growth and development of humans. It is frequently described as 'the flower of life' and 'the source of intelligence'. Zinc supplements play a pivotal role in addressing zinc deficiency by serving as a vital source of this essential micronutrients, effectively replenishing depleted zinc levels in the body. In this paper, we first described the biological behavior of zinc in the human body and briefly described the physiological phenomena associated with zinc levels. The benefits and drawbacks of various zinc supplement forms are then discussed, with emphasis on the most recent zinc supplement formulations. Finally, the application of zinc supplements in food, medicine, and animal husbandry is further summarized. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Rui Hao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Haixia Ji
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Junyan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Zhang T, Zhang N, Peng S, Zhang Y, Wang H, Huang S, Zhu M, Ma Y. Effects of Dietary Valine Chelated Zinc Supplementation on Growth Performance, Antioxidant Capacity, Immunity, and Intestine Health in Weaned Piglets. Biol Trace Elem Res 2024; 202:2577-2587. [PMID: 37730969 PMCID: PMC11052861 DOI: 10.1007/s12011-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
This study was conducted to investigate the effects of dietary valine chelated zinc (ZnVal) supplementation on growth performance, antioxidant capacity, immunity, and intestine health in weaned piglets. A total of 240 healthy 35-day-old weaned piglets (Duroc × Landrace × Yorkshire, average weight 10.70 ± 0.14 kg) were randomly divided into five groups with six replicate pens and eight piglets per pen. Dietary treatments were a corn-soybean meal basal diet supplemented with 0, 25, 50, 75, and 100 mg/kg ZnVal, respectively. The experiment lasted for 28 days. Results showed that average daily gain (ADG) was increased (P < 0.05) by ZnVal with 75-100 mg/kg supplementation on days 15-28 and with 50-100 mg/kg supplementation on days 1-28. Supplementation of 25-100 mg/kg ZnVal reduced (P < 0.01) the diarrhea rate of weaned piglets on days 1 to 14 and 1 to 28. Dietary supplementation with 25-100 mg/kg ZnVal increased (P < 0.05) copper/zinc-superoxide dismutase (Cu/Zn-SOD) and decreased malonaldehyde (MDA) activities in the serum on day 14 and 28. Supplementation of 25-100 mg/kg ZnVal increased (P < 0.05) glutathione peroxidase (GSH-Px) activity in serum on day 14. Additionally, the supplementation of 75 mg/kg ZnVal significantly increased the activity of superoxide dismutase (SOD) and Cu/Zn-SOD in the liver (P < 0.05). Furthermore, the supplementation of 25-100 mg/kg ZnVal significantly increased the total antioxidant capacity (T-AOC) in the liver (P < 0.05). Higher (P < 0.05) concentrations of IgG in the serum were measured from piglets supplemented with 75-100 mg/kg ZnVal on day 14 and dietary supplementation with 25-100 mg/kg ZnVal increased the level of immunoglobulin G (IgG) in serum on day 28 (P < 0.05). In addition, higher (P < 0.05) concentrations of immunoglobulin A (IgA) in the duodenum and ileum were measured from piglets supplemented with 75 mg/kg ZnVal and the supplementation of 25-100 mg/kg ZnVal also showed a higher (P < 0.05) concentration of immunoglobulin G (IgG) in duodenum. Supplementation of 50-100 mg/kg ZnVal increased the villus height and villus height/crypt depth of jejunum (P < 0.05). Moreover, dietary supplementation with 75-100 mg/kg ZnVal showed a higher (P < 0.05) concentration of zinc in the liver and supplementation of 50-100 mg/kg ZnVal increased (P < 0.05) the concentration of zinc in the heart, spleen, and kidney. In conclusion, the present research showed that supplementation of ZnVal improves growth performance by increasing antioxidant capacity and immunity and regulating intestinal morphology and the optimal inclusion level of ZnVal was 65~80 mg/kg.
Collapse
Affiliation(s)
- Tuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuyu Peng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yawei Zhang
- Changsha Xinjia Bio-Engineeriong Co., Ltd, Changsha, China
| | - Huakai Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shiyu Huang
- Changsha Xinjia Bio-Engineeriong Co., Ltd, Changsha, China
| | - Min Zhu
- Changsha Xinjia Bio-Engineeriong Co., Ltd, Changsha, China
| | - Yongxi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Xiong Y, Cui B, He Z, Liu S, Wu Q, Yi H, Zhao F, Jiang Z, Hu S, Wang L. Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs. Front Vet Sci 2023; 10:1142054. [PMID: 37303716 PMCID: PMC10248082 DOI: 10.3389/fvets.2023.1142054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction More effective and environment-friendly organic trace minerals have great potential to replace the inorganic elements in the diets of livestock. This study aimed to investigate the effects of dietary replacement of 100% inorganic trace minerals (ITMs) with 30-60% organic trace minerals (OTMs) on the performance, meat quality, antioxidant capacity, nutrient digestibility, and fecal mineral excretion and to assess whether low-dose OTMs could replace whole ITMs in growing-finishing pigs' diets. Methods A total of 72 growing-finishing pigs (Duroc × Landrace × Yorkshire) with an initial average body weight of 74.25 ± 0.41 kg were selected and divided into four groups with six replicates per group and three pigs per replicate. The pigs were fed either a corn-soybean meal basal diet containing commercial levels of 100% ITMs or a basal diet with 30, 45, or 60% amino acid-chelated trace minerals instead of 100% ITMs, respectively. The trial ended when the pigs' weight reached ~110 kg. Results The results showed that replacing 100% ITMs with 30-60% OTMs had no adverse effect on average daily gain, average daily feed intake, feed/gain, carcass traits, or meat quality (P > 0.05) but significantly increased serum transferrin and calcium contents (P < 0.05). Meanwhile, replacing 100% ITMs with OTMs tended to increase serum T-SOD activity (0.05 ≤ P < 0.1), and 30% OTMs significantly increased muscle Mn-SOD activity (P < 0.05). Moreover, replacing 100% ITMs with OTMs tended to increase the apparent digestibility of energy, dry matter, and crude protein (0.05 ≤ P < 0.1) while significantly reducing the contents of copper, zinc, and manganese in feces (P < 0.05). Discussion In conclusion, dietary supplementation with 30-60% OTMs has the potential to replace 100% ITMs for improving antioxidant capacity and nutrient digestibility and for reducing fecal mineral excretion without compromising the performance of growing-finishing pigs.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bailei Cui
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhentao He
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Zhao
- DeBon Bio-Tech Co., Ltd., Hengyang, Hunan, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
6
|
Park S, Kovanda L, Sokale AO, Barri A, Liu Y. In vitro investigation of monoglycerides and zinc glycinate: anti-inflammatory and epithelial barrier function. J Anim Sci 2023; 101:skae372. [PMID: 39657118 DOI: 10.1093/jas/skae372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The objectives of this study were to investigate the in vitro immune-modulatory effects of monoglycerides and zinc glycinate with porcine alveolar macrophages (PAM) and their impact on epithelial barrier integrity using the intestinal porcine enterocyte cell line (IPEC-J2). Cell viability was assessed using a Vybrant MTT assay to determine the appropriate dose range of monoglyceride blend (C4, C8, and C10) and zinc glycinate. In experiment 1, IPEC-J2 cells (5 × 105 cells/mL) were seeded and treated with each compound (monoglycerides: 0, 25, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 2, 5, 12.5, 25, and 50 µg/mL). Transepithelial electrical resistance (TEER) was measured by Ohm's law method at 0 h (before treatment) and at 24, 48, and 72 h posttreatment. In experiment 2, PAM were collected from 6 clinically healthy piglets (7 wk of age) and seeded at 106 cells/mL. After incubation, the cells were treated with each compound and/or lipopolysaccharide (LPS). The experimental design was a 2 × 6 factorial arrangement with 2 doses of LPS (0 or 1 μg/mL) and 6 doses of each compound (monoglycerides: 0, 50, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 25, 50, 100, 250, and 500 µg/mL). Cell supernatants were collected to analyze the concentrations of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) by enzyme-linked immunosorbent assay kits. Data were analyzed by ANOVA using PROC MIXED of SAS with a randomized complete block design. IPEC-J2 cells treated with 250 or 1,000 μg/mL of monoglycerides, or 5 μg/mL of zinc glycinate had increased (P < 0.05) TEER values at 48 or 72 h posttreatment, compared with control. The LPS challenge increased (P < 0.05) the production of TNF-α and IL-1β from PAM. In the non-challenge group, 50 or 100 μg/mL of monoglycerides stimulated (P < 0.05) TNF-α and IL-1β production from PAMs. Treatment with 25 or 100 μg/mL of zinc glycinate also enhanced (P < 0.05) TNF-α production from PAM. In LPS-treated PAM, 1,000 μg/mL of monoglycerides increased (P < 0.05) IL-1β production, while zinc glycinate suppressed (P < 0.0001) the secretion of TNF-α and IL-1β at the doses of 100, 250, and 500 μg/mL. In conclusion, the results of this in vitro study indicate that monoglycerides positively affect the barrier function of the epithelium, while zinc glycinate may have strong immune regulatory benefits. Future animal studies will be required to verify their impacts on animal gut health, systemic immunity, and growth performance.
Collapse
Affiliation(s)
- Sangwoo Park
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | | | | | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|