1
|
Chen D, Bi X, Feng Q, Sun Y. Supplementation with Lentil ( Lens culinaris) Hull Soluble Dietary Fiber Ameliorates Sodium Dextran Sulfate-Induced Colitis and Behavioral Deficits via the Gut-Brain Axis. Foods 2025; 14:870. [PMID: 40077572 PMCID: PMC11898428 DOI: 10.3390/foods14050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, the impact of lentil hull soluble dietary fibers (SDFs) on colitis and behavioral deficits in mice was assessed. Structural characterizations of SDFs confirmed that cellulase-modified soluble dietary fiber exhibited better physicochemical properties: more porous microstructure; similar polysaccharide structure; more stable particle size distribution; higher crystallinity; better adsorption capacity; and lower viscosity. Additionally, we explored its potential cognitive benefits via the gut-brain axis by behavioral tests, histopathology, 16S rRNA sequencing, gas chromatography and metabolomics analysis. The results showed that SDFs significantly improved inflammatory symptoms in colon and brain and cognitive behaviors. LSDF had better efficacy than HSDF. LSDF intervention decreased the harmful bacteria abundance (Bacteroides, Flexispira and Escherichia, etc.) and increased beneficial bacteria abundance (Aggregatibacter and Helicobacter, etc.). LSDF also affected brain metabolites through the sphingolipid metabolism. Spearman correlation analysis showed that there was a positive correlation between harmful bacteria with inflammatory factors (LPS, IL-1β, IL-6, and TNF-α, etc.) and sphingolipid metabolites, while beneficial bacteria were positively correlated with brain-derived neurotrophic factor (BDNF), IL-10, and cognitive behavior. This study highlights the value of SDFs in future diet-based therapeutic strategies targeting gut-brain interactions.
Collapse
Affiliation(s)
- Dongying Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| | - Qian Feng
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China;
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China;
| |
Collapse
|
2
|
Hu R, Xiao J, Fan L. The Role of the Trace Element Selenium in Inflammatory Bowel Disease. Biol Trace Elem Res 2024; 202:4923-4931. [PMID: 38363489 DOI: 10.1007/s12011-024-04074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
One set of chronic gastrointestinal disorders called inflammatory bowel disease (IBD) is defined by persistent, non-specific inflammation. Abdominal pain, hematochezia, diarrhea, and other symptoms are among its clinical signs. Currently, managing and treating IBD remains a significant challenge. Patients with IBD frequently have deficits in trace elements. Selenium (Se) is one of the necessary trace elements for normal organismal function. It has several regulatory effects, including anti-oxidation, anti-inflammatory, and defensive properties, via inducing the synthesis of selenoproteins. Patients with IBD have been shown to have lower Se levels in epidemiologic research studies. Several experimental models of IBD suggest that Se or selenoproteins play a key role in microinflammation. We discuss the relationship between Se and IBD in this review, with an emphasis on a summary of potential mechanisms of action and applications of Se in IBD.
Collapse
Affiliation(s)
- Ruifang Hu
- College of Clinical Medicine, Jining Medical University, Jining, 272013, Shandong Province, China
| | - Jinliang Xiao
- College of Clinical Medicine, Jining Medical University, Jining, 272013, Shandong Province, China
| | - Lijuan Fan
- Department of Gastroenterology, Jining No. 1 People's Hospital, Jining, 272000, Shandong Province, China.
| |
Collapse
|
3
|
Sousa JA, McKay DM, Raman M. Selenium, Immunity, and Inflammatory Bowel Disease. Nutrients 2024; 16:3620. [PMID: 39519453 PMCID: PMC11547411 DOI: 10.3390/nu16213620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Dietary intervention is a subject of growing interest in the management of inflammatory bowel disease (IBD), as new incident cases across the globe are rapidly rising, suggesting environmental factors as contributing elements. Dietary components and micronutrients have been associated with IBD pathogenesis or reductions in disease severity. Selenium, a diet-derived essential micronutrient that is important for proper immune system function, has received limited attention in the context of IBD. Selenium deficiency is a common finding in patients with IBD, but few clinical trials have been published to address the consequences of this deficiency. Here, we review the physiological and immunological roles of selenium and its putative role in IBD, and draw attention to knowledge gaps and unresolved issues, with the goal of stimulating more research on selenium in IBD.
Collapse
Affiliation(s)
- James A. Sousa
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Derek M. McKay
- Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (J.A.S.); (D.M.M.)
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Science, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Wang W, Quan Z, Kou F, Zhang S, Cao L, Zhang Z. Preparation and characterization of soluble dietary fiber from tiger nut residues, showing enhanced antioxidant activity and metal-ion-binding properties. Front Nutr 2023; 10:1275473. [PMID: 38156276 PMCID: PMC10754513 DOI: 10.3389/fnut.2023.1275473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
To improve the utilization of soluble dietary fiber (SDF) from tiger nut residues, the response surface methodology was used to optimize the conditions of superfine grinding to produce SDF with antioxidant and metal-ion-binding properties. The yield was increased (30.56%) and the average particle diameter of SDF was decreased (D50: 32.80 μm) under the optimal conditions (a proportion of grinding medium of 100%, a feeding mass of 0.90 kg, a grinding time of 20 min, and a moisture content of 8.00%). In addition, superfine grinding substantially modified the surface morphology and increased the SDF content and the proportion of monosaccharides by decreasing the molecular weight. Moreover, superfine grinding remarkably enhanced the in vitro antioxidant activities (ABTS+, DPPḤ, and ·OH) of the SDF, which also exhibited favorable metal-ion-binding properties (Ca2+, Zn2+, and Co2+). These results suggest that superfine grinding can be used as a technique to modify dietary fiber to manufacture functional SDF.
Collapse
Affiliation(s)
- Weihao Wang
- School of Forestry, Northeast Forestry University, Harbin, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhigang Quan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Shenglong Zhang
- Heilongjiang Guohong Energy Saving and Environmental Protection Co., Harbin, China
| | - Longkui Cao
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhi Zhang
- School of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Au A, Mojadadi A, Shao JY, Ahmad G, Witting PK. Physiological Benefits of Novel Selenium Delivery via Nanoparticles. Int J Mol Sci 2023; 24:ijms24076068. [PMID: 37047040 PMCID: PMC10094732 DOI: 10.3390/ijms24076068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Dietary selenium (Se) intake within the physiological range is critical to maintain various biological functions, including antioxidant defence, redox homeostasis, growth, reproduction, immunity, and thyroid hormone production. Chemical forms of dietary Se are diverse, including organic Se (selenomethionine, selenocysteine, and selenium-methyl-selenocysteine) and inorganic Se (selenate and selenite). Previous studies have largely investigated and compared the health impacts of dietary Se on agricultural stock and humans, where dietary Se has shown various benefits, including enhanced growth performance, immune functions, and nutritional quality of meats, with reduced oxidative stress and inflammation, and finally enhanced thyroid health and fertility in humans. The emergence of nanoparticles presents a novel and innovative technology. Notably, Se in the form of nanoparticles (SeNPs) has lower toxicity, higher bioavailability, lower excretion in animals, and is linked to more powerful and superior biological activities (at a comparable Se dose) than traditional chemical forms of dietary Se. As a result, the development of tailored SeNPs for their use in intensive agriculture and as candidate for therapeutic drugs for human pathologies is now being actively explored. This review highlights the biological impacts of SeNPs on growth and reproductive performances, their role in modulating heat and oxidative stress and inflammation and the varying modes of synthesis of SeNPs.
Collapse
Affiliation(s)
- Alice Au
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Albaraa Mojadadi
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jia-Ying Shao
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gulfam Ahmad
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Andrology Department, Royal Women's and Children's Pathology, Carlton, VIC 3053, Australia
| | - Paul K Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|