1
|
Mohanan MM, Vijayakumar A, Bang-Berthelsen CH, Mudnakudu-Nagaraju KK, Shetty R. Millets: Journey from an Ancient Crop to Sustainable and Healthy Food. Foods 2025; 14:1733. [PMID: 40428513 PMCID: PMC12111017 DOI: 10.3390/foods14101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Millets, often known as "nutri-cereals", have garnered renewed global interest due to their numerous health benefits, rich nutritional composition, resilience to extreme climatic conditions, and minimal environmental footprint. The advent of rice and wheat as staple foods in the 1960s led to drastic decline in millet cultivation worldwide. Recognizing the importance of millet, the United Nations (UN) declared 2023 as the International Year of Millets in an effort to accomplish Sustainable Development Goal 2 (SDG-2), i.e., zero hunger, by increasing millet production and fostering research and development to improve the integration of these grains into mainstream food systems. In recent years, global production of millets has surged, with India leading as the top producer. Millets are nutritionally advantageous, consisting of carbohydrates, antioxidants, and biologically active compounds such as flavonoids, carotenoids, phenolic acids, minerals, and vitamins. Incorporating millets into a balanced diet can help control and prevent diseases such as cardiovascular disease, diabetes, inflammation, and malnutrition due to their enriched vital nutrients, low glycemic index, and gluten-free nature. This indicates a transition of millets from an "orphan crop" to being used as ingredients for products (with or without fermentation) that are nutrient-rich, climate-resilient, sustainable, and health-promoting.
Collapse
Affiliation(s)
- Mrudula M. Mohanan
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (M.M.M.); (A.V.)
- Research Group for Microbial Biotechnology and Biorefining, Research Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark;
| | - Akshitha Vijayakumar
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (M.M.M.); (A.V.)
| | - Claus Heiner Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, Research Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark;
| | - Kiran Kumar Mudnakudu-Nagaraju
- Department of Biotechnology & Bioinformatics, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (M.M.M.); (A.V.)
| | - Radhakrishna Shetty
- Research Group for Microbial Biotechnology and Biorefining, Research Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Henrik Dams Allé, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
2
|
Sahu B, Sahu MK, Baghel A, Sahu C, Bhoi H, Kumar A, Yadav M, Bhargav N. Exploring the Nutritional Excellence and Pharmacological Potentials of Millets: A Comprehensive Review. Chem Biodivers 2025:e202500280. [PMID: 40166891 DOI: 10.1002/cbdv.202500280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/02/2025]
Abstract
Millets, known as 'super grains', are recognised globally for their outstanding nutritional, phytochemical, and pharmacological benefits. This review highlights their various health-promoting properties, including antioxidant, anti-diabetic, anti-inflammatory, hypolipidemic, antimicrobial, neuroprotective, immunomodulatory, gastroprotective and anticancer activities. Rich in bioactive compounds like phenolics, flavonoids and dietary fibre, millets help manage lifestyle-related disorders and chronic diseases. They modulate oxidative stress, regulate glucose metabolism, and boost immune responses. Millets are also seen as a sustainable solution to global food security and dietary challenges, making them valuable in modern diets. Promoting millet consumption can lead to further research on their therapeutic benefits and encourage their inclusion in daily nutrition for better health and wellness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megha Yadav
- National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | | |
Collapse
|
3
|
Yue Z, Zhang R, Feng N, Yuan X. Uncovering the Differences in Flavour Volatiles from Hybrid and Conventional Foxtail Millet Varieties Based on Gas Chromatography-Ion Migration Spectrometry and Chemometrics. PLANTS (BASEL, SWITZERLAND) 2025; 14:708. [PMID: 40094604 PMCID: PMC11902185 DOI: 10.3390/plants14050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The flavour of foxtail millet (Setaria italica (L.) P. Beauv.) is an important indicator for evaluating the quality of the millet. The volatile components in steamed millet porridge samples were analysed using electronic nose (E-Nose) and gas chromatography-ion mobility spectrometry (GC-IMS) techniques, and characteristic volatile fingerprints were constructed to clarify the differences in the main flavour substances in different foxtail millet varieties (two hybrids and two conventional foxtail millets). After sensory evaluation by judges, Jingu 21 (JG) scored significantly higher than the other varieties, and the others were, in order, Jinmiao K1 (JM), Changzagu 466 (CZ) and Zhangzagu 3 (ZZ). E-Nose analysis showed differences in sulphides and terpenoids, nitrogen oxides, organosulphides and aromatic compounds in different varieties of millet porridge. A total of 59 volatile components were determined by GC-IMS in the four varieties of millet porridge, including 23 aldehydes, 17 alcohols, 9 ketones, 4 esters, 2 acids, 3 furans and 1 pyrazine. Comparative analyses of the volatile components in JG, JM, ZZ and CZ revealed that the contents of octanal, nonanal and 3-methyl-2-butenal were higher in JG; the contents of trans-2-butenal, 2-methyl-1-propanol, trans-2-heptenal and trans-2-pentenal were higher in JM; and the contents of 2-octanone, hexanol, 1-octen-3-ol, 2-pentanone and butyraldehyde were higher in ZZ. The contents of 2-butanol, propionic acid and acetic acid were higher in CZ. A prediction model with good stability was established by orthogonal partial least squares discriminant analysis (OPLS-DA), and 25 potential characteristic markers (VIP > 1) were screened out from 59 volatile organic compounds (VOCs). These volatile components can be used to distinguish the different varieties of millet porridge samples. Moreover, we found conventional foxtail millet contained more aldehydes than the hybridised foxtail millet; especially decanal, 1-nonanal-D, heptanal-D, 1-octanal-M, 1-octanal-D and 1-nonanal-M were significantly higher in JG than in the other varieties. These results indicate that the E-Nose combined with GC-IMS can be used to characterise the flavour volatiles of different foxtail millet, and the results of this study may provide some information for future understanding of the aroma characteristics of foxtail millet and the genetic improvement of hybrid grains.
Collapse
Affiliation(s)
- Zhongxiao Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Ruidong Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Naihong Feng
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, China; (R.Z.); (N.F.)
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| |
Collapse
|
4
|
Sun D, Yu J, Zhan Y, Cheng X, Zhang J, Li Y, Li Q, Xiong Y, Liu W. Lacidophilin tablets alleviate constipation through regulation of intestinal microflora by promoting the colonization of Akkermansia sps. Sci Rep 2024; 14:7152. [PMID: 38531966 DOI: 10.1038/s41598-024-57732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.
Collapse
Affiliation(s)
- Denglong Sun
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingting Yu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yang Zhan
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Xiaoying Cheng
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingwen Zhang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
5
|
Jena A, Sharma V, Dutta U. Millets as superfoods: Let thy cereal be thy medicine. Indian J Gastroenterol 2023; 42:304-307. [PMID: 37199878 DOI: 10.1007/s12664-023-01377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Anuraag Jena
- Department of Gastroenterology, Topiwala National Medical College and B Y L Nair Hospital, Mumbai, 400 008, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Usha Dutta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
6
|
Guo Y, Song L, Huang Y, Li X, Xiao Y, Wang Z, Ren Z. Latilactobacillus sakei Furu2019 and stachyose as probiotics, prebiotics, and synbiotics alleviate constipation in mice. Front Nutr 2023; 9:1039403. [PMID: 36687730 PMCID: PMC9849682 DOI: 10.3389/fnut.2022.1039403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Slow transit constipation (STC) is a common disorder in the digestive system. This study aimed to evaluate the effects of stachyose (ST) and Latilactobacillus sakei Furu 2019 (L. sakei) alone or combined on diphenoxylate-induced constipation and explore the underlying mechanisms using a mouse model. Methods ICR mice were randomly divided into five groups. The normal and constipation model groups were intragastrically administrated with PBS. The ST, L. sakei, and synbiotic groups were intragastrically administrated with ST (1.5 g/kg body weight), alive L. sakei (3 × 109 CFU/mouse), or ST + L. sakei (1.5 g/kg plus 3 × 109 CFU/mouse), respectively. After 21 days of intervention, all mice except the normal mice were intragastrically administrated with diphenoxylate (10 mg/kg body weight). Defecation indexes, constipation-related intestinal factors, serum neurotransmitters, hormone levels, short-chain fatty acids (SCFAs), and intestinal microbiota were measured. Results Our results showed that three interventions with ST, L. sakei, and synbiotic combination (ST + L. sakei) all alleviated constipation, and synbiotic intervention was superior to ST or L. sakei alone in some defecation indicators. The RT-PCR and immunohistochemical experiment showed that all three interventions relieved constipation by affecting aquaporins (AQP4 and AQP8), interstitial cells of Cajal (SCF and c-Kit), glial cell-derived neurotrophic factor (GDNF), and Nitric Oxide Synthase (NOS). The three interventions exhibited a different ability to increase the serum excitatory neurotransmitters and hormones (5-hydroxytryptamine, substance P, motilin), and reduce the serum inhibitory neurotransmitters (vasoactive intestinal peptide, endothelin). The result of 16S rDNA sequencing of feces showed that synbiotic intervention significantly increased the relative abundance of beneficial bacteria such as Akkermansia, and regulated the gut microbes of STC mice. In conclusion, oral administration of ST or L. sakei alone or combined are all effective to relieve constipation and the symbiotic use may have a promising preventive effect on STC.
Collapse
|