1
|
Fleischmann DF, Unterrainer M, Schön R, Corradini S, Maihöfer C, Bartenstein P, Belka C, Albert NL, Niyazi M. Margin reduction in radiotherapy for glioblastoma through 18F-fluoroethyltyrosine PET? - A recurrence pattern analysis. Radiother Oncol 2020; 145:49-55. [PMID: 31923709 DOI: 10.1016/j.radonc.2019.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND PURPOSE 18F-fluoroethyltyrosine (18F-FET) PET is increasingly used in radiation treatment planning for the primary treatment of glioblastoma (GBM) patients additionally to contrast-enhanced MRI. To answer the question, whether a margin reduction in the primary treatment setting could be achieved through 18F-FET PET imaging, a recurrence pattern analysis was performed. PATIENTS AND METHODS GBM patients undergoing 18F-FET PET examination before primary radiochemotherapy from 05/2009 to 11/2014 were included into the recurrence pattern analysis. Biological tumour volumes were semi-automatically created and fused with MR-based gross tumour volumes (MRGTVs). The pattern of recurrence was examined for MRGTVs and for PET-MRGTVs. The minimal margin including all recurrent tumour sites was assessed by gradual expansion of the PET-MRGTVs and MRGTVs until inclusion of all contrast-enhancing areas at recurrence. RESULTS 36 GBM patients were included to the analysis. The minimal margin including all contrast enhancing tumour at recurrence was significantly smaller for the PET-MRGTVs compared to the MRGTVs (median 12.5 mm vs. 16.5 mm; p < 0.001, Wilcoxon-Test). PET-MRGTVs with 15 mm CTV margins were significantly smaller than MRGTVs with 20 mm CTV margins (median volume 255.92 vs. 258.35 cm3; p = 0.020, Wilcoxon-Test; excluding 3 cases with large non-contrast enhancing tumours). The pattern of recurrence of PET-MRGTVs with 15 mm CTV margins was comparable to MRGTVs with 20 mm CTV margins (32 vs. 30 central, 2 vs. 4 in-field, 2 vs. 2 ex-field and no marginal recurrences). CONCLUSION Target volume delineation of GBM patients can be improved through 18F-FET PET imaging prior to primary radiation treatment, since vital tumour can be detected more accurately. Furthermore, the results suggest that CTV margins could be reduced through 18F-FET PET imaging prior to primary RT of GBM.
Collapse
Affiliation(s)
- Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Rudolph Schön
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Cornelius Maihöfer
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany.
| | - Peter Bartenstein
- German Cancer Consortium (DKTK), Partner Site Munich, Germany; Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Germany.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
2
|
Jaymanne DT, Kaushal S, Chan D, Schembri G, Brazier D, Bailey D, Wheeler H, Back M. Utilizing 18F-fluoroethyl-l
-tyrosine positron emission tomography in high grade glioma for radiation treatment planning in patients with contraindications to MRI. J Med Imaging Radiat Oncol 2017; 62:122-127. [DOI: 10.1111/1754-9485.12676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Dasantha T Jaymanne
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - Sneha Kaushal
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
| | - David Chan
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Geoff Schembri
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - David Brazier
- Department of Medical Imaging; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Dale Bailey
- Department of PET and Nuclear Medicine; Royal North Shore Hospital; Sydney New South Wales Australia
| | - Helen Wheeler
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| | - Michael Back
- Northern Sydney Cancer Centre; Royal North Shore Hospital; Sydney New South Wales Australia
- Central Coast Cancer Centre; Gosford Hospital; Gosford New South Wales Australia
- Sydney Medical School; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
3
|
|
4
|
Wang Z, Chen Q. β-catenin knockdown inhibits the proliferation of human glioma cells in vitro and in vivo. Exp Ther Med 2016; 11:1059-1064. [PMID: 26998037 DOI: 10.3892/etm.2016.2998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
β-catenin is a crucial oncogene that is capable of regulating cancer progression. The aim of the present study was to clarify whether β-catenin was associated with the proliferation and progress of glioma. In order to knockdown the expression of β-catenin in human U251 glioma cells, three pairs of small interfering (si)RNA were designed and synthesized and the most effective siRNA was selected and used for silencing the endogenous β-catenin, which was detected by western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Proliferation was subsequently detected using a methylthiazolyl-tetrazolium bromide assay and the results demonstrated that knockdown of β-catenin significantly inhibited the proliferation of U251 cells in a time- and dose-dependent manner (P<0.01). Cell apoptosis rate was analyzed using flow cytometry and Annexin V-fluorescein isothiocyanate/propidium iodide staining demonstrated that β-catenin siRNA significantly increased the apoptosis of U251 cells (P<0.01). Furthermore, the results of an in vitro scratch assay demonstrated that β-catenin silencing suppressed the proliferation of U251 cells, as compared with the control group (P<0.01). In vivo, β-catenin expression levels in U251 cells were significantly inhibited (P<0.01) following β-catenin short hairpin (sh)RNA lentiviral-vector transfection, as detected by western blot analysis and RT-qPCR. Tumorigenicity experiments demonstrated that β-catenin inhibition significantly increased the survival rate of nude mice. The results of the present study demonstrated that knockdown of β-catenin expression significantly inhibited the progression of human glioma cancer cells, in vitro and in vivo; thus suggesting that β-catenin silencing may be a novel therapy for the treatment of human glioma.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
5
|
Kilian K. 68Ga-DOTA and analogs: Current status and future perspectives. Rep Pract Oncol Radiother 2014; 19:S13-S21. [PMID: 28443194 DOI: 10.1016/j.rpor.2014.04.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/28/2014] [Accepted: 04/23/2014] [Indexed: 12/18/2022] Open
Abstract
The construction of the 68Ge/68Ga generator has increased application of radiopharmaceuticals labeled with this isotope in medicine. 68Ga-PET is widely employed in the management of neuroendocrine tumors but favorable chemistry with tri- and tetraaza-ring molecules has opened wide range of 68Ga application in other fields of PET imaging. This review covers the radiopharmaceuticals labeled with gallium in molecular imaging and shows perspectives on the use of gallium-68 as a substitute for technetium-99, fluorine-18 and carbon-11 in some applications.
Collapse
Affiliation(s)
- Krzysztof Kilian
- Heavy Ion Laboratory, University of Warsaw, Pasteur 5a, 02093 Warsaw, Poland
| |
Collapse
|
6
|
Orth M, Lauber K, Niyazi M, Friedl AA, Li M, Maihöfer C, Schüttrumpf L, Ernst A, Niemöller OM, Belka C. Current concepts in clinical radiation oncology. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:1-29. [PMID: 24141602 PMCID: PMC3935099 DOI: 10.1007/s00411-013-0497-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/05/2013] [Indexed: 05/04/2023]
Abstract
Based on its potent capacity to induce tumor cell death and to abrogate clonogenic survival, radiotherapy is a key part of multimodal cancer treatment approaches. Numerous clinical trials have documented the clear correlation between improved local control and increased overall survival. However, despite all progress, the efficacy of radiation-based treatment approaches is still limited by different technological, biological, and clinical constraints. In principle, the following major issues can be distinguished: (1) The intrinsic radiation resistance of several tumors is higher than that of the surrounding normal tissue, (2) the true patho-anatomical borders of tumors or areas at risk are not perfectly identifiable, (3) the treatment volume cannot be adjusted properly during a given treatment series, and (4) the individual heterogeneity in terms of tumor and normal tissue responses toward irradiation is immense. At present, research efforts in radiation oncology follow three major tracks, in order to address these limitations: (1) implementation of molecularly targeted agents and 'omics'-based screening and stratification procedures, (2) improvement of treatment planning, imaging, and accuracy of dose application, and (3) clinical implementation of other types of radiation, including protons and heavy ions. Several of these strategies have already revealed promising improvements with regard to clinical outcome. Nevertheless, many open questions remain with individualization of treatment approaches being a key problem. In the present review, the current status of radiation-based cancer treatment with particular focus on novel aspects and developments that will influence the field of radiation oncology in the near future is summarized and discussed.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna A. Friedl
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Minglun Li
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cornelius Maihöfer
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Schüttrumpf
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anne Ernst
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivier M. Niemöller
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
- Present Address: Clinic for Radiation Oncology, St. Elisabeth Hospital Ravensburg, Ravensburg, Germany
| | - Claus Belka
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
7
|
Cyran CC, Paprottka PM, Eisenblätter M, Clevert DA, Rist C, Nikolaou K, Lauber K, Wenz F, Hausmann D, Reiser MF, Belka C, Niyazi M. Visualization, imaging and new preclinical diagnostics in radiation oncology. Radiat Oncol 2014; 9:3. [PMID: 24387195 PMCID: PMC3903445 DOI: 10.1186/1748-717x-9-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022] Open
Abstract
Innovative strategies in cancer radiotherapy are stimulated by the growing knowledge on cellular and molecular tumor biology, tumor pathophysiology, and tumor microenvironment. In terms of tumor diagnostics and therapy monitoring, the reliable delineation of tumor boundaries and the assessment of tumor heterogeneity are increasingly complemented by the non-invasive characterization of functional and molecular processes, moving preclinical and clinical imaging from solely assessing tumor morphology towards the visualization of physiological and pathophysiological processes. Functional and molecular imaging techniques allow for the non-invasive characterization of tissues in vivo, using different modalities, including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET) and optical imaging (OI). With novel therapeutic concepts combining optimized radiotherapy with molecularly targeted agents focusing on tumor cell proliferation, angiogenesis, and cell death, the non-invasive assessment of tumor microcirculation and tissue water diffusion, together with strategies for imaging the mechanisms of cellular injury and repair is of particular interest. Characterizing the tumor microenvironment prior to and in response to irradiation will help to optimize the outcome of radiotherapy. These novel concepts of personalized multi-modal cancer therapy require careful pre-treatment stratification as well as a timely and efficient therapy monitoring to maximize patient benefit on an individual basis. Functional and molecular imaging techniques are key in this regard to open novel opportunities for exploring and understanding the underlying mechanisms with the perspective to optimize therapeutic concepts and translate them into a personalized form of radiotherapy in the near future.
Collapse
Affiliation(s)
- Clemens C Cyran
- Department of Clinical Radiology, Laboratory of Experimental Radiology, University of Munich Hospitals, Campus Großhadern, Marchioninistraße 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Refined brain tumor diagnostics and stratified therapies: the requirement for a multidisciplinary approach. Acta Neuropathol 2013; 126:21-37. [PMID: 23689616 DOI: 10.1007/s00401-013-1127-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 12/18/2022]
Abstract
Individualized therapies are popular current concepts in oncology and first steps towards stratified medicine have now been taken in neurooncology through implementation of stratified therapeutic approaches. Knowledge about the molecular basis of brain tumors has expanded greatly in recent years and a few molecular alterations are studied routinely because of their clinical relevance. However, no single targeted agent has yet been fully approved for the treatment of glial brain tumors. In this review, we argue that multidisciplinary and integrated approaches are essential for translational research and the development of new treatments for patients with malignant gliomas, and we present a conceptual framework in which to place the components of such an interdisciplinary approach. We believe that this ambitious goal can be best realized through strong cooperation of brain tumor centers with local hospitals and physicians; such an approach enables close dialogue between expert subspecialty clinicians and local therapists to consider all aspects of this increasingly complex set of diseases.
Collapse
|