1
|
Xue B, von Heyking K, Gassmann H, Poorebrahim M, Thiede M, Schober K, Mautner J, Hauer J, Ruland J, Busch DH, Thiel U, Burdach SEG. T Cells Directed against the Metastatic Driver Chondromodulin-1 in Ewing Sarcoma: Comparative Engineering with CRISPR/Cas9 vs. Retroviral Gene Transfer for Adoptive Transfer. Cancers (Basel) 2022; 14:cancers14225485. [PMID: 36428578 PMCID: PMC9688113 DOI: 10.3390/cancers14225485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Ewing sarcoma (EwS) is a highly malignant sarcoma of bone and soft tissue with early metastatic spread and an age peak in early puberty. The prognosis in advanced stages is still dismal, and the long-term effects of established therapies are severe. Efficacious targeted therapies are urgently needed. Our previous work has provided preliminary safety and efficacy data utilizing T cell receptor (TCR) transgenic T cells, generated by retroviral gene transfer, targeting HLA-restricted peptides on the tumor cell derived from metastatic drivers. Here, we compared T cells engineered with either CRISPR/Cas9 or retroviral gene transfer. Firstly, we confirmed the feasibility of the orthotopic replacement of the endogenous TCR by CRISPR/Cas9 with a TCR targeting our canonical metastatic driver chondromodulin-1 (CHM1). CRISPR/Cas9-engineered T cell products specifically recognized and killed HLA-A*02:01+ EwS cell lines. The efficiency of retroviral transduction was higher compared to CRISPR/Cas9 gene editing. Both engineered T cell products specifically recognized tumor cells and elicited cytotoxicity, with CRISPR/Cas9 engineered T cells providing prolonged cytotoxic activity. In conclusion, T cells engineered with CRISPR/Cas9 could be feasible for immunotherapy of EwS and may have the advantage of more prolonged cytotoxic activity, as compared to T cells engineered with retroviral gene transfer.
Collapse
Affiliation(s)
- Busheng Xue
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
| | - Kristina von Heyking
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
| | - Mansour Poorebrahim
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81674 Munich, Germany
| | - Josef Mautner
- Department of Gene Vectors, Helmholtz Centre Munich, 81377 Munich, Germany
- DZIF, German Center for Infection Research, Partner Site Munich, Germany Institute of Clinical, 81675 Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
- Munich Childhood Health Alliance (CHANCE) e.V, 80337 Munich, Germany
| | - Jürgen Ruland
- DZIF, German Center for Infection Research, Partner Site Munich, Germany Institute of Clinical, 81675 Munich, Germany
- DKTK German Cancer Consortium, Partner Site Munich, 81675 Munich, Germany
- Institute of Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich, 81674 Munich, Germany
- DZIF, German Center for Infection Research, Partner Site Munich, Germany Institute of Clinical, 81675 Munich, Germany
- Munich Childhood Health Alliance (CHANCE) e.V, 80337 Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
- Munich Childhood Health Alliance (CHANCE) e.V, 80337 Munich, Germany
- Correspondence: (U.T.); (S.E.G.B.)
| | - Stefan E. G. Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany
- Munich Childhood Health Alliance (CHANCE) e.V, 80337 Munich, Germany
- DKTK German Cancer Consortium, Partner Site Munich, 81675 Munich, Germany
- Translational Pediatric Cancer Research-Institute of Pathology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Molecular Oncology, British Columbia Cancer Research Centre and Academy of Translational Medicine, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
- Correspondence: (U.T.); (S.E.G.B.)
| |
Collapse
|
2
|
Pando A, Fast L, Dubielecka PM, Chorzalska A, Wen S, Reagan J. Murine Leukemia-Derived Extracellular Vesicles Elicit Antitumor Immune Response. J Blood Med 2021; 12:277-285. [PMID: 34040472 PMCID: PMC8139718 DOI: 10.2147/jbm.s308861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Background Extracellular vesicles (EVs) are heterogeneous lipid bilayer particles secreted by cells. EVs contain proteins, RNA, DNA and other cargo that can have immunomodulatory effects. Cancer-derived EVs have been described as having immunomodulating effects in vivo with immunosuppressive and pro-tumor growth capabilities. However, cancer-derived EVs have also been harnessed and utilized for anti-cancer potential. Methods To assess the immunomodulatory effect of EVs produced by acute myeloid leukemia (AML) cells, we isolated vesicles secreted by the murine AML cell line, C1498, and investigated their effect on in vitro and in vivo immune responses. Results These leukemia-derived EVs were found to induce increased proliferation of CD3+ cells and enhanced cytolytic activity of CD3+ cells directed toward leukemic cells in vitro. Injection of leukemia-derived EVs into syngeneic naïve mice induced T cell responses in vivo and resulted in enhanced immune responses upon T cell re-stimulation in vitro. Conclusion These findings indicate that C1498-derived EVs have immunomodulatory effects on cell-mediated immune responses that could potentially be utilized to facilitate anti-leukemia immune responses.
Collapse
Affiliation(s)
- Alejandro Pando
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Loren Fast
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Patrycja M Dubielecka
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Anna Chorzalska
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - Sicheng Wen
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - John Reagan
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and the Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Burdach SEG, Westhoff MA, Steinhauser MF, Debatin KM. Precision medicine in pediatric oncology. Mol Cell Pediatr 2018; 5:6. [PMID: 30171420 PMCID: PMC6119176 DOI: 10.1186/s40348-018-0084-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/01/2018] [Indexed: 01/06/2023] Open
Abstract
Outcome in treatment of childhood cancers has improved dramatically since the 1970s. This success was largely achieved by the implementation of cooperative clinical research trial groups that standardized and developed treatment of childhood cancer. Nevertheless, outcome in certain types of malignancies is still unfavorable. Intensification of conventional chemotherapy and radiotherapy improved outcome only marginally at the cost of acute and long-term side effects. Hence, it is necessary to develop targeted therapy strategies.Here, we review the developments and perspectives in precision medicine in pediatric oncology with a special focus on targeted drug therapies like kinase inhibitors and inducers of apoptosis, the impact of cancer genome sequencing and immunotherapy.
Collapse
Affiliation(s)
- Stefan E G Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC), Technische Universität München, Koelner Platz 1, 80804, Munich, Germany. .,CCC München-Comprehensive Cancer Center and German Translational Cancer Research Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| | - Maximilian Felix Steinhauser
- Department of Pediatrics and Children's Cancer Research Center (CCRC), Technische Universität München, Koelner Platz 1, 80804, Munich, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Eythstr. 24, 89075, Ulm, Germany
| |
Collapse
|
4
|
Human HLA-A*02:01/CHM1+ allo-restricted T cell receptor transgenic CD8+ T cells specifically inhibit Ewing sarcoma growth in vitro and in vivo. Oncotarget 2017; 7:43267-43280. [PMID: 27281613 PMCID: PMC5190022 DOI: 10.18632/oncotarget.9218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
The endochondral bone protein Chondromodulin-I (CHM1) provides oncogene addiction in Ewing sarcoma (ES). We pre-clinically tested the targetability of CHM1 by TCR transgenic, allo-restricted, peptide specific T cells to treat ES. We previously generated allo-restricted wildtype CD8+ T cells directed against the ES specific antigen CHM1319 causing specific responses against ES. However, utilization of these cells in current therapy protocols is hampered due to high complexity in production, relatively low cell numbers, and rapid T cell exhaustion.In order to provide off-the-shelf products in the future, we successfully generated HLA-A*02:01-restricted T cell receptor (TCR) transgenic T cells directed against CHM1319 by retroviral transduction.After short-term expansion a 100% purified CHM1319-TCR-transgenic T cell population expressed a CD62L+/CD45RO and CD62L+/CD45RA+ phenotype. These cells displayed specific in vitro IFNg and granzyme B release in co-culture with HLA-A*02:01+ ES cell lines expressing CHM1. When co-injected with ES cells in Rag2-/-É£c-/- mice, CHM1-specific TCR-transgenic T cells significantly inhibited the formation of lung and liver metastases in contrast to control mice. Lungs and livers of representative mice displayed CD8+ T cell infiltration in the presence (control group treated with unspecific T cells) and in the absence (study group) of metastatic disease, respectively. Furthermore, mice receiving unspecific T cells showed signs of graft-versus-host-disease in contrast to all mice, receiving CHM1319-TCR-transgenic T cells.CHM1319 specific TCR-transgenic T cells were successfully generated causing anti-ES responses in vitro and in vivo. In the future, CHM1319-TCR-transgenic T cells may control minimal residual disease rendering donor lymphocyte infusions more efficacious and less toxic.
Collapse
|
5
|
Thiel U, Schober SJ, Einspieler I, Kirschner A, Thiede M, Schirmer D, Gall K, Blaeschke F, Schmidt O, Jabar S, Ranft A, Alba Rubío R, Dirksen U, Grunewald TGP, Sorensen PH, Richter GHS, von Lüttichau IT, Busch DH, Burdach SEG. Ewing sarcoma partial regression without GvHD by chondromodulin-I/HLA-A*02:01-specific allorestricted T cell receptor transgenic T cells. Oncoimmunology 2017. [PMID: 28638739 DOI: 10.1080/2162402x.2017.1312239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Background: Chondromodulin-I (CHM1) sustains malignancy in Ewing sarcoma (ES). Refractory ES carries a dismal prognosis and patients with bone marrow (BM) metastases do not survive irrespective of therapy. We assessed HLA-A*02:01/CHM1-specific allorestricted T cell receptor (TCR) wild-type and transgenic cytotoxic (CD8+) T cells against ES. Patients and Methods: Three refractory HLA-A2+ ES patients were treated with HLA-A*02:01/peptide-specific allorepertoire-derived (i.e., allorestricted) CD8+ T cells. Patient #1 received up to 4.8 × 105/kg body weight HLA-A*02:01- allorestricted donor-derived wild-type CD8+ T cells. Patient #2 received up to 8.2 × 106/kg HLA-A*02:01- donor-derived and patient #3 up to 6 × 106/kg autologous allorestricted TCR transgenic CD8+ T cells. All patients were treated with the same TCR complementary determining region 3 allorecognition sequence for CHM1 peptide 319 (CHM1319). Results: HLA-A*02:01/CHM1319-specific allorestricted CD8+ T cells showed specific in vitro lysis of all patient-derived ES cell lines. Therapy was well tolerated and did not cause graft versus host disease (GvHD). Patients #1 and #3 showed slow progression, whereas patient #2, while having BM involvement, showed partial metastatic regression associated with T cell homing to involved lesions. CHM1319 TCR transgenic T cells could be tracked in his BM for weeks. Conclusions: CHM1319-TCR transgenic T cells home to affected BM and may cause partial disease regression. HLA-A*02:01/antigen-specific allorestricted T cells proliferate in vivo without causing GvHD.
Collapse
Affiliation(s)
- Uwe Thiel
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Ingo Einspieler
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Andreas Kirschner
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - David Schirmer
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Katja Gall
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Franziska Blaeschke
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Oxana Schmidt
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Susanne Jabar
- Department of Pediatric Hematology and Oncology, Westfälische Wilhelms Universität, Münster, Germany
| | - Andreas Ranft
- Department of Pediatric Hematology and Oncology, Westfälische Wilhelms Universität, Münster, Germany
| | - Rebeca Alba Rubío
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU, Munich.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uta Dirksen
- Department of Pediatric Hematology and Oncology, Westfälische Wilhelms Universität, Münster, Germany
| | - Thomas G P Grunewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU, Munich.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,CCC München Comprehensive Cancer Center and German Translational Cancer Research Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Poul H Sorensen
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany.,Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Günther H S Richter
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Irene Teichert von Lüttichau
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Stefan E G Burdach
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technische Universität München, Munich, Germany.,CCC München Comprehensive Cancer Center and German Translational Cancer Research Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
6
|
Kirschner A, Thiede M, Grünewald TGP, Alba Rubio R, Richter GHS, Kirchner T, Busch DH, Burdach S, Thiel U. Pappalysin-1 T cell receptor transgenic allo-restricted T cells kill Ewing sarcoma in vitro and in vivo. Oncoimmunology 2017; 6:e1273301. [PMID: 28344885 PMCID: PMC5353903 DOI: 10.1080/2162402x.2016.1273301] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 01/06/2023] Open
Abstract
Pregnancy-associated plasma protein-A (PAPPA), also known as pappalysin, is a member of the insulin-like growth factor (IGF) family. PAPPA acts as a protease, cleaving IGF inhibitors, i.e., IGF binding proteins (IGFBPs), thereby setting free IGFs. The insulin/IGF-axis is involved in cancer in general and in Ewing sarcoma (ES) in particular. ES is a highly malignant bone tumor characterized by early metastatic spread. PAPPA is associated with various cancers. It is overexpressed and required for proliferation in ES. PAPPA also stimulates normal bone growth. We isolated HLA-A*02:01+/peptide-restricted T cells from A*02:01− healthy donors directed against PAPPA, generated by priming with A*02:01+ PAPPA peptide loaded dendritic cells. After TCR identification, retrovirally TCR transduced CD8+ T cells were assessed for their in vitro specificity and in vivo efficacy in human ES bearing Rag2−/−γc−/− mice. Engraftment in mice and tumor infiltration of TCR transgenic T cells in the mice was evaluated. The TCR transgenic T cell clone PAPPA-2G6 demonstrated specific reactivity toward HLA-A*02:01+/PAPPA+ ES cell lines. We furthermore detected circulating TCR transgenic T cells in the blood in Rag2−/−γc−/− mice and in vivo engraftment in bone marrow. Tumor growth in mice with xenografted ES was significantly reduced after treatment with PAPPA-2G6 TCR transgenic T cells in contrast to controls. Tumors of treated mice revealed tumor-infiltrating PAPPA-2G6 TCR transgenic T cells. In summary, we demonstrate that PAPPA is a first-rate target for TCR-based immunotherapy of ES.
Collapse
Affiliation(s)
- Andreas Kirschner
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technische Universität München , München, Germany
| | - Melanie Thiede
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technische Universität München , München, Germany
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, München, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebeca Alba Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich , München, Germany
| | - Günther H S Richter
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Kirchner
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, München, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Comprehensive Cancer Center (CCC) Munich, München, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München , München, Germany
| | - Stefan Burdach
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technische Universität München, München, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Comprehensive Cancer Center (CCC) Munich, München, Germany
| | - Uwe Thiel
- Laboratory for Functional Genomics and Transplantation Biology, Department of Pediatrics and Children's Cancer Research Center, Klinikum rechts der Isar, Technische Universität München , München, Germany
| |
Collapse
|
7
|
Schirmer D, Grünewald TGP, Klar R, Schmidt O, Wohlleber D, Rubío RA, Uckert W, Thiel U, Bohne F, Busch DH, Krackhardt AM, Burdach S, Richter GHS. Transgenic antigen-specific, HLA-A*02:01-allo-restricted cytotoxic T cells recognize tumor-associated target antigen STEAP1 with high specificity. Oncoimmunology 2016; 5:e1175795. [PMID: 27471654 PMCID: PMC4938321 DOI: 10.1080/2162402x.2016.1175795] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Pediatric cancers, including Ewing sarcoma (ES), are only weakly immunogenic and the tumor-patients' immune system often is devoid of effector T cells for tumor elimination. Based on expression profiling technology, targetable tumor-associated antigens (TAA) are identified and exploited for engineered T-cell therapy. Here, the specific recognition and lytic potential of transgenic allo-restricted CD8(+) T cells, directed against the ES-associated antigen 6-transmembrane epithelial antigen of the prostate 1 (STEAP1), was examined. Following repetitive STEAP1(130) peptide-driven stimulations with HLA-A*02:01(+) dendritic cells (DC), allo-restricted HLA-A*02:01(-) CD8(+) T cells were sorted with HLA-A*02:01/peptide multimers and expanded by limiting dilution. After functional analysis of suitable T cell clones via ELISpot, flow cytometry and xCELLigence assay, T cell receptors' (TCR) α- and β-chains were identified, cloned into retroviral vectors, codon optimized, transfected into HLA-A*02:01(-) primary T cell populations and tested again for specificity and lytic capacity in vitro and in a Rag2(-/-)γc(-/-) mouse model. Initially generated transgenic T cells specifically recognized STEAP1(130)-pulsed or transfected cells in the context of HLA-A*02:01 with minimal cross-reactivity as determined by specific interferon-γ (IFNγ) release, lysed cells and inhibited growth of HLA-A*02:01(+) ES lines more effectively than HLA-A*02:01(-) ES lines. In vivo tumor growth was inhibited more effectively with transgenic STEAP1(130)-specific T cells than with unspecific T cells. Our results identify TCRs capable of recognizing and inhibiting growth of STEAP1-expressing HLA-A*02:01(+) ES cells in vitro and in vivo in a highly restricted manner. As STEAP1 is overexpressed in a wide variety of cancers, we anticipate these STEAP1-specific TCRs to be potentially useful for immunotherapy of other STEAP1-expressing tumors.
Collapse
Affiliation(s)
- David Schirmer
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Thomas G. P. Grünewald
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Munich, Germany
| | - Richard Klar
- Medical Department III, Hematology and Oncology, Munich, Germany
| | - Oxana Schmidt
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology/Experimental Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Rebeca Alba Rubío
- Laboratory for Pediatric Sarcoma Biology, Institute of Pathology of the LMU Munich, Munich, Germany
| | | | - Uwe Thiel
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Felix Bohne
- Institute of Virology, Technische Universität München, Helmholtz Zentrum München, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | | | - Stefan Burdach
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| | - Günther H. S. Richter
- Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany and Comprehensive Cancer Center Munich (CCCM), Munich, Germany
| |
Collapse
|
8
|
Corcos D. Food-Nonfood Discrimination in Ancestral Vertebrates: Gamete Cannibalism and the Origin of the Adaptive Immune System. Scand J Immunol 2015; 82:409-17. [PMID: 26286030 DOI: 10.1111/sji.12348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Adaptive immunity is a complex system that appeared twice in vertebrates (in gnathostomes and in jawless fish) although it is not required for invertebrate defence. The adaptive immune system is tightly associated with self-non-self discrimination, and it is now clear that this interplay is not limited to the prevention of autoreactivity. Micro-organisms are usually considered for their pathogenicity or symbiotic ability, but, for most small metazoans, they mainly constitute food. Vertebrates are characterized by feeding by predation on larger preys, when compared to their ancestors who were filter feeders and ate micro-organisms. Predation gives a strong selective advantage, not only due to the availability of new food resources but also by the ability to eliminate competitors for environmental resources (intraguild predation (IGP)). Unlike size-structured IGP, intraspecific predation of juveniles, zygotes or gametes can be detrimental for species fitness in some circumstances. The ability of individuals to recognize highly polymorphic molecules on the surface of gametes present in the plankton and so distinguish self versus non-self gametes might have constituted a strong selective advantage in intraspecific competition. Here, I propose the theory that the capacity to rearrange receptors has been selected in ancestral vertebrates as a consequence of this strong need for discriminating between hetero-cannibalism versus filial cannibalism. This evolutionary origin sheds light on presently unexplained features of the immune system, including the existence of regulatory T cells and of non-pathogenic natural autoimmunity.
Collapse
Affiliation(s)
- D Corcos
- U1021 INSERM, Institut Curie, Centre National de la Recherche Scientifique (CNRS) UMR3347, Institut National de la Santé et de Recherche Médicale (INSERM) U1021, Université Paris-Sud 11, Centre Universitaire, Orsay, France
| |
Collapse
|