1
|
Kalinin RE, Suchkov IA, Raitsev SN, Zvyagina VI, Bel'skikh ES. Role of Hypoxia-Inducible Factor 1α in Adaptation to Hypoxia in the Pathogenesis of Novel Coronavirus Disease 2019. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2024; 32:133-144. [DOI: 10.17816/pavlovj165536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
INTRODUCTION: A novel coronavirus (severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2)) emerged in December 2019 and rapidly spread over the world having provoked a pandemic of respiratory disease. This highly pathogenic virus can attack the lung tissue and derange gas exchange leading to acute respiratory distress syndrome and systemic hypoxia. Hypoxic conditions trigger activation of adaptation mechanisms including hypoxia-inducible factor-1á (HIF-1á) which is involved in the regulation of the key processes, e. g, proliferation and metabolism of cells and angiogenesis. Besides, the level of HIF-1á expression is associated with the intensity of the immune response of an organism including that of the innate immunity mediating inflammatory reaction. Therefore, understanding the peculiarities of the mechanisms underlying the pathogenesis of this disease is of great importance for effective therapy of coronavirus disease 2019 (COVID-19).
AIM: Analysis of the current data on HIF-1á and its effect on the pathogenesis and progression of COVID-19.
The analysis of the relevant domestic and international literature sources was performed in the following sections: HIF-1á as a key factor of adaptation to hypoxia, targets for HIF-1á in the aspect of the pathogenesis of COVID-19, disorders in HIF-1á-mediated adaptation to hypoxia as an element of the pathogenesis of hyperactivation of the immune cells.
CONCLUSION: HIF-1á prevents penetration of SARS-CoV-2 virus into a cell and primarily acts as the main regulator of the proinflammatory activity at the inflammation site surrounded by hypoxia. In the conditions of the deranged metabolic flexibility, a high level of HIF-1á evokes an excessive inflammatory response of the immune cells. A high HIF-1á level in cells of the inflammation focus is associated with enhanced production of the factors of angiogenesis mediating vascular permeability and capillary leakage process. This is accompanied by tissue damage and organ failure. At the same time, HIF-1á can mediate the anti-inflammatory effect through activation of adenosine receptor-dependent pathway, which is considered as a probable protection of cells and organs against damage by hyperactive immune cells.
Collapse
|
2
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Vela‐Rodríguez C, Yang C, Alanen HI, Eki R, Abbas TA, Maksimainen MM, Glumoff T, Duman R, Wagner A, Paschal BM, Lehtiö L. Oligomerization mediated by the D2 domain of DTX3L is critical for DTX3L-PARP9 reading function of mono-ADP-ribosylated androgen receptor. Protein Sci 2024; 33:e4945. [PMID: 38511494 PMCID: PMC10955461 DOI: 10.1002/pro.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognize ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerization, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, and assemble into a high molecular weight oligomeric complex, the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerization of DTX3L is important for the DTX3L-PARP9 complex to read mono-ADP-ribosylation on a ligand-regulated transcription factor.
Collapse
Affiliation(s)
- Carlos Vela‐Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Chunsong Yang
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Heli I. Alanen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Rebeka Eki
- Department of Radiation OncologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tarek A. Abbas
- Department of Radiation OncologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation CampusDidcotUK
| | - Bryce M. Paschal
- Department of Biochemistry and Molecular GeneticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter OuluUniversity of OuluOuluFinland
| |
Collapse
|
4
|
Li T, Huang J, Zeng A, Yu N, Long X. Ubiquitin-specific peptidase 11 promotes development of keloid derived fibroblasts by de-ubiquitinating TGF-β receptorII. Burns 2024; 50:641-652. [PMID: 38097445 DOI: 10.1016/j.burns.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 04/08/2024]
Abstract
BACKGROUND Keloid scars occur as a result of abnormal wound healing caused by trauma or inflammation of the skin. The progression of keloids is dependent on genetic and environmental influences. The incidence is more prevalent in people with darker skin tones (African, Asian and Hispanic origin). Studies have demonstrated that transforming growth factor (TGF) β/Smad signalling has an essential function in keloid as well as that USP11 could modulate the activation of TGFβ/Smad signalling and impact the progression of the fibrotic disease. Nonetheless, the potential mechanisms of USP11 in keloid were still unclear. The authors postulated that USP11 up-regulates and augments the ability of proliferation, invasion, migration and collagen deposition of keloid-derived fibroblasts (KFBs) through deubiquitinating TGF-β receptor II (TβRII). METHODS Fibroblast cells were isolated from keloid scars in vitro. Lentivirus infection was utilized to knockdown and over-express the USP11 in KFBs. Influence of USP11 on proliferation, invasion and migration of KFBs, and expression level of TβRII, Smad2, Smad3, α-SMA, collagen1 and collagen3 were assayed by CCK8, scratching, transwell, Western blot and real-time quantitative polymerase chain reaction. The interactions between USP11 and TβRII were examined using ubiquitination assays and co-immunoprecipitation. To further confirm the role of USP11 in keloid growth, we performed animal experiments. RESULTS Results show that down-regulated USP11 markedly suppressed the ability of proliferation, invasion and migration of keloid derived-fibroblasts in vitro and reduce the expression of TβRII, Smad2, Smad3, αSMA, collagen1 and collagen3. In addition, over-expression of USP11 demonstrated the contrary tendency. Ubiquitination experiments and co-immunoprecipitation demonstrated that USP11 was interacting with TβRII and deubiquitinated TβRII. Interferences with USP11 inhibited growth of keloid in vivo. Additionally, we have verified that knockdown of USP11 has no significant effect on normal skin fibroblasts. CONCLUSION USP11 elevates the ability of proliferation, collagen deposition, invasion and migration of keloid-derived fibroblasts by deubiquitinating TβRII.
Collapse
Affiliation(s)
- Tianhao Li
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiuzuo Huang
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ang Zeng
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nanze Yu
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xiao Long
- Department of Plastic and Cosmetic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Vela-Rodríguez C, Yang C, Alanen HI, Eki R, Abbas TA, Maksimainen MM, Glumoff T, Duman R, Wagner A, Paschal BM, Lehtiö L. Oligomerisation mediated by the D2 domain of DTX3L is critical for DTX3L-PARP9 reading function of mono-ADP-ribosylated androgen receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569193. [PMID: 38076829 PMCID: PMC10705365 DOI: 10.1101/2023.11.29.569193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Deltex proteins are a family of E3 ubiquitin ligases that encode C-terminal RING and DTC domains that mediate interactions with E2 ubiquitin-conjugating enzymes and recognise ubiquitination substrates. DTX3L is unique among the Deltex proteins based on its N-terminal domain architecture. The N-terminal D1 and D2 domains of DTX3L mediate homo-oligomerisation, and the D3 domain interacts with PARP9, a protein that contains tandem macrodomains with ADP-ribose reader function. While DTX3L and PARP9 are known to heterodimerize, they assemble into a high molecular weight oligomeric complex, but the nature of the oligomeric structure, including whether this contributes to the ADP-ribose reader function is unknown. Here, we report a crystal structure of the DTX3L N-terminal D2 domain and show that it forms a tetramer with, conveniently, D2 symmetry. We identified two interfaces in the structure: a major, conserved interface with a surface of 973 Å2 and a smaller one of 415 Å2. Using native mass spectrometry, we observed molecular species that correspond to monomers, dimers and tetramers of the D2 domain. Reconstitution of DTX3L knockout cells with a D1-D2 deletion mutant showed the domain is dispensable for DTX3L-PARP9 heterodimer formation, but necessary to assemble an oligomeric complex with efficient reader function for ADP-ribosylated androgen receptor. Our results suggest that homo-oligomerisation of DTX3L is important for mono-ADP-ribosylation reading by the DTX3L-PARP9 complex and to a ligand-regulated transcription factor.
Collapse
Affiliation(s)
- Carlos Vela-Rodríguez
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Chunsong Yang
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - Heli I. Alanen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, USA
| | - Tarek A. Abbas
- Department of Radiation Oncology, University of Virginia, USA
| | - Mirko M. Maksimainen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Bryce M. Paschal
- Department of Biochemistry and Molecular Genetics, University of Virginia, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
6
|
Belapurkar R, Pfisterer M, Dreute J, Werner S, Zukunft S, Fleming I, Kracht M, Schmitz ML. A transient increase of HIF-1α during the G1 phase (G1-HIF) ensures cell survival under nutritional stress. Cell Death Dis 2023; 14:477. [PMID: 37500648 PMCID: PMC10374543 DOI: 10.1038/s41419-023-06012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
The family of hypoxia-inducible transcription factors (HIF) is activated to adapt cells to low oxygen conditions, but is also known to regulate some biological processes under normoxic conditions. Here we show that HIF-1α protein levels transiently increase during the G1 phase of the cell cycle (designated as G1-HIF) in an AMP-activated protein kinase (AMPK)-dependent manner. The transient elimination of G1-HIF by a degron system revealed its contribution to cell survival under unfavorable metabolic conditions. Indeed, G1-HIF plays a key role in the cell cycle-dependent expression of genes encoding metabolic regulators and the maintenance of mTOR activity under conditions of nutrient deprivation. Accordingly, transient elimination of G1-HIF led to a significant reduction in the concentration of key proteinogenic amino acids and carbohydrates. These data indicate that G1-HIF acts as a cell cycle-dependent surveillance factor that prevents the onset of starvation-induced apoptosis.
Collapse
Affiliation(s)
- Ratnal Belapurkar
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Maximilian Pfisterer
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Jan Dreute
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Sebastian Werner
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - Sven Zukunft
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Goethe University, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Member of the German Center for Lung Research, Giessen, Germany.
| |
Collapse
|
7
|
Elucidating the role of hypoxia-inducible factor in rheumatoid arthritis. Inflammopharmacology 2022; 30:737-748. [PMID: 35364736 DOI: 10.1007/s10787-022-00974-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic multifactorial disease, provocative, and degenerative autoimmune condition that impacts millions of individuals around the globe. As a result of this understanding, anti-inflammatory drugs have been created, perhaps widely effective (like steroids) and highly specialized methods (including anti-TNF antibody) using biological therapies (including TNF inhibitors). Despite this, the connections between inflammatory response, articular development, and intracellular responsiveness to changes in oxygen concentration are undervalued in rheumatoid arthritis. Hypoxia, or a lack of oxygen, is thought to cause enhanced synovial angiogenesis in RA, which is mediated by some of the hypoxia-inducible factors like vascular endothelial growth factor (VEGF). Substantial genetic alterations occur when the HIF regulatory factors signaling cycle is activated, allowing organelles, tissues, and species to acclimatize to decreasing oxygen saturation. The most well-characterized hypoxia-responsive transcripts are the angiogenic stimulant VEGF, whose production is greatly elevated by hypoxia in several types of cells, especially RA synovium fibroblasts. Blocking vascular endothelial growth factors has been demonstrated to be helpful in murine models of rheumatism, indicating how hypoxia could trigger the angiogenesis process, resulting in the progression of RA. These mechanisms highlight the intimate affiliation amongst hypoxia, angiogenesis, and inflammation in rheumatoid arthritis. This review will look at how hypoxia activates molecular pathways and how other pathways involving inflammatory signals develop and sustain synovitis in rheumatoid arthritis.
Collapse
|
8
|
Peng Q, Wan D, Zhou R, Luo H, Wang J, Ren L, Zeng Y, Yu C, Zhang S, Huang X, Peng Y. The biological function of metazoan-specific subunit nuclear factor related to kappaB binding protein of INO80 complex. Int J Biol Macromol 2022; 203:176-183. [PMID: 35093437 DOI: 10.1016/j.ijbiomac.2022.01.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022]
Abstract
The INO80 chromatin remodeling complex plays an essential role in the regulation of gene transcription, which participate in a variety of important biological processes in cells including DNA repair and DNA replication. Difference from the yeast INO80 complex, metazoan INO80 complex have the specific subunit G, which is known as nuclear factor related to kappaB binding protein (NFRKB). Recently, NFRKB has been received much attention in many aspects, such as DNA repair, cell pluripotency, telomere protection, and protein activity regulation. To dig the new function of metazoan INO80 complex, a better understanding of the role of NFRKB is required. In this review, we provide an overview of the structure and function of NFRKB and discuss its potential role in cancer treatment and telomere regulation. Overall, this review provides an important reference for further research of the INO80 complex and NFRKB.
Collapse
Affiliation(s)
- Qiyao Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Dan Wan
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Rongrong Zhou
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongyu Luo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 410016, China
| | - Junyi Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lingyan Ren
- School of Safety Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Yajun Zeng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Department of Pharmacy, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shuihan Zhang
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 410016, China.
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine&Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
9
|
Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett 2021; 502:133-142. [PMID: 33444690 PMCID: PMC8158653 DOI: 10.1016/j.canlet.2020.12.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
10
|
Albanese A, Daly LA, Mennerich D, Kietzmann T, Sée V. The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int J Mol Sci 2020; 22:E268. [PMID: 33383924 PMCID: PMC7796330 DOI: 10.3390/ijms22010268] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The hypoxia signalling pathway enables adaptation of cells to decreased oxygen availability. When oxygen becomes limiting, the central transcription factors of the pathway, hypoxia-inducible factors (HIFs), are stabilised and activated to induce the expression of hypoxia-regulated genes, thereby maintaining cellular homeostasis. Whilst hydroxylation has been thoroughly described as the major and canonical modification of the HIF-α subunits, regulating both HIF stability and activity, a range of other post-translational modifications decorating the entire protein play also a crucial role in altering HIF localisation, stability, and activity. These modifications, their conservation throughout evolution, and their effects on HIF-dependent signalling are discussed in this review.
Collapse
Affiliation(s)
- Adam Albanese
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| | - Leonard A. Daly
- Department of Biochemistry and System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland; (D.M.); (T.K.)
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland; (D.M.); (T.K.)
| | - Violaine Sée
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L697ZB, UK;
| |
Collapse
|
11
|
Jia P, Zhang W, Xiang Y, Lu X, Liu W, Jia K, Yi M. Ubiquitin-specific protease 5 was involved in the interferon response to RGNNV in sea perch (Lateolabrax japonicus). FISH & SHELLFISH IMMUNOLOGY 2020; 103:239-247. [PMID: 32437860 DOI: 10.1016/j.fsi.2020.04.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Deubiquitinases are widely involved in the regulation of the virus-triggered type I interferon (IFN) signaling. Here, we found sea perch (Lateolabrax japonicus) ubiquitin-specific protease 5 (LjUSP5) was a negative regulatory factor of the red-spotted grouper nervous necrosis virus (RGNNV)-triggered IFN response. LjUSP5 encoded a polypeptide of 830 amino acids, containing a zinc finger UBP domain (residues 197-270 aa), two ubiquitin-associated domains (residues 593-607 aa; 628-665 aa), and one UBP domain (residues 782-807 aa), and shared the closest genetic relationship with the USP5 of Larimichthys crocea. Quantitative RT-PCR analysis showed that LjUSP5 was ubiquitously expressed and up-regulated significantly in all inspected tissues post RGNNV infection, and its transcripts significantly increased in brain, liver and kidney tissues post RGNNV infection. LjUSP5 was up-regulated in cultured LJB cells after poly I:C and RGNNV treatments. In addition, overexpression of LjUSP5 significantly inhibited the activation of zebrafish IFN 1 promoter and promoted RGNNV replication in vitro. Furthermore, LjUSP5 inhibited the activation of zebrafish IFN 1 promoter induced by key genes of retinoic acid-inducible gene I-like receptors signaling pathway. Our findings provides useful information for further elucidating the mechanism underlying NNV infection.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wanwan Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Yangxi Xiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Xiaobing Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong, China.
| |
Collapse
|
12
|
Pyo J, Ryu J, Kim W, Choi JS, Jeong JW, Kim JE. The Protein Phosphatase PPM1G Destabilizes HIF-1α Expression. Int J Mol Sci 2018; 19:ijms19082297. [PMID: 30081604 PMCID: PMC6121667 DOI: 10.3390/ijms19082297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are key regulators of hypoxic responses, and their stability and transcriptional activity are controlled by several kinases. However, the regulation of HIF by protein phosphatases has not been thoroughly investigated. Here, we found that overexpression of Mg2+/Mn2+-dependent protein phosphatase 1 gamma (PPM1G), one of Ser/Thr protein phosphatases, downregulated protein expression of ectopic HIF-1α under normoxic or acute hypoxic conditions. In addition, the deficiency of PPM1G upregulated protein expression of endogenous HIF-1α under normoxic or acute oxidative stress conditions. PPM1G decreased expression of HIF-1α via the proteasomal pathway. PPM1G-mediated HIF-1α degradation was dependent on prolyl hydroxylase (PHD), but independent of von Hippel-Lindau (VHL). These data suggest that PPM1G is critical for the control of HIF-1α-dependent responses.
Collapse
Affiliation(s)
- Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Wootae Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Jae-Sun Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Anatomy and Neurobiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea.
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
13
|
The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road. Exp Cell Res 2017; 356:152-159. [PMID: 28315321 DOI: 10.1016/j.yexcr.2017.03.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/13/2017] [Indexed: 12/30/2022]
Abstract
The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level.
Collapse
|
14
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
15
|
Jacko AM, Nan L, Li S, Tan J, Zhao J, Kass DJ, Zhao Y. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II. Cell Death Dis 2016; 7:e2474. [PMID: 27853171 PMCID: PMC5260874 DOI: 10.1038/cddis.2016.371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022]
Abstract
The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- A M Jacko
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L Nan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - S Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - J Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D J Kass
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|