1
|
Labaf M, Han W, Zhang S, Liu M, Patten ND, Li M, Patalano S, Macoska JA, Balk SP, Han D, Zarringhalam K, Cai C. Heterogeneous Responses to High-Dose Testosterone in Castration-Resistant Prostate Cancer Tumors with Mixed Rb-Proficient and Rb-Deficient Cells. Mol Cancer Ther 2025; 24:772-783. [PMID: 40116305 PMCID: PMC12046331 DOI: 10.1158/1535-7163.mct-24-0716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025]
Abstract
Androgen deprivation therapy remains a cornerstone in managing prostate cancer. However, its recurrence often leads to the more aggressive castration-resistant prostate cancer (CRPC). Although second-line androgen receptor signaling inhibition treatments such as enzalutamide and abiraterone are available, their effectiveness against CRPC is only transient. High-dose testosterone (Hi-T) has recently emerged as a promising treatment for CRPC, primarily through the suppression of E2F and MYC signaling. However, the roles of Rb family proteins in influencing this therapeutic response remain debated. In this study, we utilized a CRPC patient-derived xenograft model that includes both Rb pathway-proficient and -deficient cell populations based on the positive or negative expression of RB family genes. Single-cell RNA sequencing analysis revealed that Rb-proficient cells displayed a robust response to Hi-T, whereas Rb-deficient cells exhibited significant resistance. Notably, our analysis indicated increased enrichment of the hypoxia signature in the Rb-deficient cell population. Further studies in RB1-silenced CRPC cell lines showed that treatment with a hypoxia-inducible factor-1α inhibitor can restore the sensitivity of Rb-deficient cells to high-dose dihydrotestosterone treatment. In conclusion, our research provides new molecular insights into CRPC tumor cell responses to Hi-T and proposes a new strategy to resensitize Rb-deficient CRPC cells to Hi-T treatment.
Collapse
Affiliation(s)
- Maryam Labaf
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Mathematics, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
- Human Biology Division, Fred Hutchinson Cancer Center, Washington
| | - Songqi Zhang
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Mingyu Liu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Nolan D. Patten
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
- Division of Urology, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Susan Patalano
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Jill A. Macoska
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Steven P. Balk
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| | - Kourosh Zarringhalam
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts
| |
Collapse
|
2
|
Hill G, Persad R, Bolomytis S. Reverse intermittent androgen deprivation therapy: Prostate cancer and hypopituitarism. JOURNAL OF CLINICAL UROLOGY 2022. [DOI: 10.1177/2051415820923231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Testosterone replacement in the context of untreated prostate cancer is a controversial topic, where the symptomatic benefits of testosterone therapy contrast with the risk of disease progression. We report the case of a 76-year-old gentleman, under watchful waiting for known prostate cancer, who underwent a transsphenoidal resection of a pituitary macroadenoma. The adenoma and subsequent surgical treatment resulted in secondary testosterone deficiency, effectively ‘self-commencing’ endogenous androgen deprivation therapy. After discussion with the endocrine team, careful intermittent testosterone supplementation was undertaken to address his symptoms, with the patient undergoing prostate-specific antigen surveillance. This was felt to be similar to intermittent androgen deprivation therapy in reverse. Here, we review current evidence regarding testosterone therapy in the context of prostate cancer. Level of Evidence: 5
Collapse
Affiliation(s)
| | - Raj Persad
- Bristol Urological Institute, Southmead Hospital, UK
| | | |
Collapse
|
3
|
Fan B, Li XC, Huang YB, Li WL, Sun M, Duan X, Wang YT, Zhang LX, Xin ZH, Yun ZF. Impacts of androgen deprivation therapy on the risks and outcomes of SARS-CoV-2 infection in patients with prostate cancer. Asian J Androl 2022; 25:366-374. [PMID: 35915542 DOI: 10.4103/aja202246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Studies have investigated the effects of androgen deprivation therapy (ADT) use on the incidence and clinical outcomes of coronavirus disease 2019 (COVID-19); however, the results have been inconsistent. We searched the PubMed, Medline, Cochrane, Scopus, and Web of Science databases from inception to March 2022; 13 studies covering 84 003 prostate cancer (PCa) patients with or without ADT met the eligibility criteria and were included in the meta-analysis. We calculated the pooled risk ratios (RRs) with 95% confidence intervals (CIs) to explore the association between ADT use and the infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and severity of COVID-19. After synthesizing the evidence, the pooled RR in the SARS-CoV-2 positive group was equal to 1.17, and the SARS-CoV-2 positive risk in PCa patients using ADT was not significantly different from that in those not using ADT (P = 0.544). Moreover, no significant results concerning the beneficial effect of ADT on the rate of intensive care unit admission (RR = 1.04, P = 0.872) or death risk (RR = 1.23, P = 0.53) were found. However, PCa patients with a history of ADT use had a markedly higher COVID-19 hospitalization rate (RR = 1.31, P = 0.015) than those with no history of ADT use. These findings indicate that ADT use by PCa patients is associated with a high risk of hospitalization during infection with SARS-CoV-2. A large number of high quality studies are needed to confirm these results.
Collapse
|
4
|
Xiong X, Qiu S, Yi X, Xu H, Lei H, Liao D, Bai S, Peng G, Wei Q, Ai J, Yang L. Efficacy and safety of bipolar androgen therapy in mCRPC after progression on abiraterone or enzalutamide: A systematic review. Urol Oncol 2021; 40:4.e19-4.e28. [PMID: 34548234 DOI: 10.1016/j.urolonc.2021.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To further determine the efficacy and safety of bipolar androgen therapy (BAT) on patients with metastatic castration-resistant prostate cancer (mCRPC) after progression on abiraterone (ABI) or enzalutamide (ENZA). MATERIALS AND METHODS We systematically searched the Pubmed, Web of Science and ClinicalTrials.gov up to June 2021. Literature review, study selection, and data extraction were conducted by 2 reviewers. Risk of bias was assessed according to the methodology of the European Association of Urology (EAU). A systematic review and pooled analysis were performed. The primary outcomes were PSA50 after BAT and AR-targeted therapy rechallenge, objective response rate (ORR) after BAT, and AEs after BAT. The definition of PSA50 was that participants achieving a PSA decline ≥50% according to Prostate Cancer Working Group (PCWG2) criteria. The ORR determined by determined by Response Evaluation Criteria in Solid Tumors (RECIST) included patients experienced partial response (PR) or complete response (CR). RESULTS In a total of 74 unique records, 5 studies were eligible for inclusion. Participants who underwent BAT achieved PSA50 of 0.26 (95% CI [0.20, 0.32]) and objective response rate (ORR) of 0.32 (95% CI [0.21, 0.44]). Patients completed BAT proceeded to AR-target therapy (ABI or ENZA) achieved moderate response (PSA50 0.54, 95% CI [0.30, 0.76]). Based on our multiple subgroup analysis, type of post-BAT AR-target therapy had a strong impact on PSA50 of AR-target therapy rechallenge. Most of adverse events (AEs) were low grade. CONCLUSIONS The present study indicated that BAT could induce clinical responses in mCRPC patients after progression on ABI or ENZA, with an acceptable side effects profile. BAT could also be able to restore sensitivity to ABI and ENZA rechallenge in a subset of patients.
Collapse
Affiliation(s)
- Xingyu Xiong
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; Center of Biomedical big data, West China Hospital, Sichuan University, Chengdu, China
| | - Xianyanling Yi
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Hang Xu
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Haoran Lei
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Dazhou Liao
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Shengjiang Bai
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| | - Lu Yang
- Department of Urology, Institute of Urology, Center of Biomedical big data and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Sottnik JL, Vanderlinden L, Joshi M, Chauca-Diaz A, Owens C, Hansel DE, Sempeck C, Ghosh D, Theodorescu D. Androgen Receptor Regulates CD44 Expression in Bladder Cancer. Cancer Res 2021; 81:2833-2846. [PMID: 33687952 PMCID: PMC8782536 DOI: 10.1158/0008-5472.can-20-3095] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is important in the development of both experimental and human bladder cancer. However, the role of AR in bladder cancer growth and progression is less clear, with literature indicating that more advanced stage and grade disease are associated with reduced AR expression. To determine the mechanisms underlying these relationships, we profiled AR-expressing human bladder cancer cells by AR chromatin immunoprecipitation sequencing and complementary transcriptomic approaches in response to in vitro stimulation by the synthetic androgen R1881. In vivo functional genomics consisting of pooled shRNA or pooled open reading frame libraries was employed to evaluate 97 genes that recapitulate the direction of expression associated with androgen stimulation. Interestingly, we identified CD44, the receptor for hyaluronic acid, a potent biomarker and driver of progressive disease in multiple tumor types, as significantly associated with androgen stimulation. CRISPR-based mutagenesis of androgen response elements associated with CD44 identified a novel silencer element leading to the direct transcriptional repression of CD44 expression. In human patients with bladder cancer, tumor AR and CD44 mRNA and protein expression were inversely correlated, suggesting a clinically relevant AR-CD44 axis. Collectively, our work describes a novel mechanism partly explaining the inverse relationship between AR and bladder cancer tumor progression and suggests that AR and CD44 expression may be useful for prognostication and therapeutic selection in primary bladder cancer. SIGNIFICANCE: This study describes novel AREs that suppress CD44 and an expected inverse correlation of AR-CD44 expression observed in human bladder tumors.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
- Functional Genomics Facility, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Charles Owens
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Donna E Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, Oregon
| | - Colin Sempeck
- Department of Molecular Cellular & Developmental Biology, University of Colorado - Boulder, Boulder, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Dan Theodorescu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
6
|
Formaggio N, Rubin MA, Theurillat JP. Loss and revival of androgen receptor signaling in advanced prostate cancer. Oncogene 2021; 40:1205-1216. [PMID: 33420371 PMCID: PMC7892335 DOI: 10.1038/s41388-020-01598-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Targeting the androgen receptor (AR) signaling axis has been, over decades, the mainstay of prostate cancer therapy. More potent inhibitors of androgen synthesis and antiandrogens have emerged and have been successfully implemented in clinical practice. That said, the stronger inhibition of the AR signaling axis has led in recent years to an increase of prostate cancers that de-differentiate into AR-negative disease. Unfortunately, this process is intimately linked with a poor prognosis. Here, we review the molecular mechanisms that enable cancer cells to switch from an AR-positive to an AR-negative disease and efforts to prevent/revert this process and thereby maintain/restore AR-dependence.
Collapse
Affiliation(s)
- Nicolò Formaggio
- grid.29078.340000 0001 2203 2861Institute of Oncology Research, Università della Svizzera italiana, Lugano, Switzerland
| | - Mark A. Rubin
- grid.5734.50000 0001 0726 5157Department for BioMedical Research and Bern Center of Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Jean-Philippe Theurillat
- grid.29078.340000 0001 2203 2861Institute of Oncology Research, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
7
|
Kokal M, Mirzakhani K, Pungsrinont T, Baniahmad A. Mechanisms of Androgen Receptor Agonist- and Antagonist-Mediated Cellular Senescence in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12071833. [PMID: 32650419 PMCID: PMC7408918 DOI: 10.3390/cancers12071833] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The androgen receptor (AR) plays a leading role in the control of prostate cancer (PCa) growth. Interestingly, structurally different AR antagonists with distinct mechanisms of antagonism induce cell senescence, a mechanism that inhibits cell cycle progression, and thus seems to be a key cellular response for the treatment of PCa. Surprisingly, while physiological levels of androgens promote growth, supraphysiological androgen levels (SAL) inhibit PCa growth in an AR-dependent manner by inducing cell senescence in cancer cells. Thus, oppositional acting ligands, AR antagonists, and agonists are able to induce cellular senescence in PCa cells, as shown in cell culture model as well as ex vivo in patient tumor samples. This suggests a dual AR-signaling dependent on androgen levels that leads to the paradox of the rational to keep the AR constantly inactivated in order to treat PCa. These observations however opened the option to treat PCa patients with AR antagonists and/or with androgens at supraphysiological levels. The latter is currently used in clinical trials in so-called bipolar androgen therapy (BAT). Notably, cellular senescence is induced by AR antagonists or agonist in both androgen-dependent and castration-resistant PCa (CRPC). Pathway analysis suggests a crosstalk between AR and the non-receptor tyrosine kinase Src-Akt/PKB and the PI3K-mTOR-autophagy signaling in mediating AR-induced cellular senescence in PCa. In this review, we summarize the current knowledge of therapeutic induction and intracellular pathways of AR-mediated cellular senescence.
Collapse
Affiliation(s)
| | | | | | - Aria Baniahmad
- Correspondence: ; Tel.: +49-3641-9396820; Fax: +49-3641-99396822
| |
Collapse
|
8
|
Lavorgna G, Montorsi F, Salonia A. Re: Hung-Ming Lam, Holly M. Nguyen, Mark P. Labrecque, et al. Durable Response of Enzalutamide-resistant Prostate Cancer to Supraphysiological Testosterone Is Associated with a Multifaceted Growth Suppression and Impaired DNA Damage Response Transcriptomic Program in Patient-derived Xenografts. Eur Urol 2020;77:144-55. Eur Urol 2020; 78:e137-e138. [PMID: 32527693 DOI: 10.1016/j.eururo.2020.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Giovanni Lavorgna
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Francesco Montorsi
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy; University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
9
|
Han D, Chen S, Han W, Gao S, Owiredu JN, Li M, Balk SP, He HH, Cai C. ZBTB7A Mediates the Transcriptional Repression Activity of the Androgen Receptor in Prostate Cancer. Cancer Res 2019; 79:5260-5271. [PMID: 31444154 PMCID: PMC6801099 DOI: 10.1158/0008-5472.can-19-0815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023]
Abstract
Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.
Collapse
Affiliation(s)
- Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Jude N Owiredu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts.
| |
Collapse
|
10
|
CPT1A Supports Castration-Resistant Prostate Cancer in Androgen-Deprived Conditions. Cells 2019; 8:cells8101115. [PMID: 31547059 PMCID: PMC6830347 DOI: 10.3390/cells8101115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and the global burden of the disease is rising. The majority of PCa deaths are due to metastasis that are highly resistant to current hormonal treatments; this state is called castration-resistant prostate cancer (CRPC). In this study, we focused on the role of the lipid catabolism enzyme CPT1A in supporting CRPC growth in an androgen-dependent manner. We found that androgen withdrawal promoted the growth of CPT1A over-expressing (OE) tumors while it decreased the growth of CPT1A under-expressing (KD) tumors, increasing their sensitivity to enzalutamide. Mechanistically, we found that CPT1A-OE cells burned more lipid and showed increased histone acetylation changes that were partially reversed with a p300 specific inhibitor. Conversely, CPT1A-KD cells showed less histone acetylation when grown in androgen-deprived conditions. Our results suggest that CPT1A supports CRPC by supplying acetyl groups for histone acetylation, promoting growth and antiandrogen resistance.
Collapse
|
11
|
Lam HM, Nguyen HM, Labrecque MP, Brown LG, Coleman IM, Gulati R, Lakely B, Sondheim D, Chatterjee P, Marck BT, Matsumoto AM, Mostaghel EA, Schweizer MT, Nelson PS, Corey E. Durable Response of Enzalutamide-resistant Prostate Cancer to Supraphysiological Testosterone Is Associated with a Multifaceted Growth Suppression and Impaired DNA Damage Response Transcriptomic Program in Patient-derived Xenografts. Eur Urol 2019; 77:144-155. [PMID: 31227306 DOI: 10.1016/j.eururo.2019.05.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Androgen deprivation therapy improves the survival of castration-resistant prostate cancer (CRPC) patients, yet ultimately fails with debilitating side effects. Supraphysiological testosterone (SPT)-based therapy produces clinical responses with improved quality of life in a subset of patients. Currently, no information defines a durable response to SPT. OBJECTIVE To identify key molecular phenotypes underlying SPT response to improve patient selection and guide combination treatment to achieve a durable response. DESIGN, SETTING, AND PARTICIPANTS A patient-derived xenograft (PDX) preclinical trial was performed with 13 CRPC PDXs to identify molecular features associated with SPT response. Comprehensive intratumoral androgen, tumor growth, and integrated transcriptomic and protein analyses were performed in three PDXs resistant to the newer androgen receptor (AR) pathway inhibitor enzalutamide (ENZ) to define SPT response and resistance. INTERVENTION Testosterone cypionate. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS SPT efficacy was evaluated by PDX growth, prostate-specific antigen (PSA) change, and survival. Intratumoral androgens were analyzed using mass spectrometry. Global transcriptome analysis was performed using RNA sequencing, and confirmed by quantitative real-time polymerase chain reaction and immunohistochemistry. Log-rank and Mann-Whitney tests were used for survival and molecular analyses, respectively. RESULTS AND LIMITATIONS A durable SPT responder was identified, presenting robust repressions of ARv7 and E2F transcriptional outputs, and a DNA damage response (DDR) transcriptomic program that were altogether restored upon SPT resistance in the transient responder. ENZ rechallenge of SPT-relapsed PDXs resulted in PSA decreases but tumor progression. CONCLUSIONS SPT produces a durable response in AR-pathway inhibitor ENZ CRPC that is associated with sustained suppression of ARv7 and E2F transcriptional outputs, and the DDR transcriptome, highlighting the potential of combination treatments that maintain suppression of these programs to drive a durable response to SPT. PATIENT SUMMARY Patients with ENZ-resistant prostate cancer have very limited treatment options. Supraphysiological testosterone presents a prominent option for improved quality of life and a potential durable response in patients with sustained suppression on ARv7/E2F transcriptional outputs and DNA repair program.
Collapse
Affiliation(s)
- Hung-Ming Lam
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Holly M Nguyen
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Mark P Labrecque
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lisha G Brown
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bryce Lakely
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel Sondheim
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Payel Chatterjee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brett T Marck
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Elahe A Mostaghel
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Michael T Schweizer
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter S Nelson
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Xu Y, Song Q, Pascal LE, Zhong M, Zhou Y, Zhou J, Deng F, Huang J, Wang Z. DHX15 is up-regulated in castration-resistant prostate cancer and required for androgen receptor sensitivity to low DHT concentrations. Prostate 2019; 79:657-666. [PMID: 30714180 PMCID: PMC6823643 DOI: 10.1002/pros.23773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND DHX15 is a member of the DEAH-box (DHX) RNA helicase family. Our previous study identified it as an AR coactivator which contributes to prostate cancer progression. METHODS We investigated DHX15 expression in castration resistant prostate cancer specimens and the influence of DHX15 on the responsiveness of prostate cancer cells to DHT stimulation. We also explored the role DHX15 played in enzalutamide resistance and the interacting domain in DHX15 with AR. DHX15 expression level in human CRPC specimens and prostate cancer specimens was detected by tissue microarray (TMA) immunostaining analysis. Colony formation assay was performed to determine the proliferation of cells treated with enzalutamide or DHT. siRNAs were used to knockdown DHX15. The interactions between DHX15 and AR were detected using co-immunoprecipitation assay. RESULTS The expression level of DHX15 was upregulated in human CRPC specimens compared with hormone naïve prostate cancer specimens. DHX15 knockdown reduced AR sensitivity to low DHT concentrations in C4-2 cells. Inactivation of DHX15 sensitizes the enzalutamide treatment in C4-2 cells. Deletion mutagenesis indicated that DHX1 5 interacts with AR through its N terminal domain. CONCLUSIONS These findings suggest that DHX15 contributes to prostate cancer progression. DHX15 is required for androgen receptor sensitivity to low DHT concentrations and contributes to enzalutamide resistance in C4-2 cells. Targeting DHX15 may improve the ADT treatment.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
- The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qiong Song
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Laura E. Pascal
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mingming Zhong
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yibin Zhou
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Zhou
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Fang‐Ming Deng
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Zhou Wang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|