1
|
Liu M, Fu Y, Zhu S, Hong Q, Huang W, Chen C, Xu M, Kang Y, Zhang X, Li J. Survival Analysis of Secondary Primary Lung Cancer After Breast Cancer Patients: Insights From a Retrospective Single-Center Study of Clinical Outcomes and Prognostic Indicators. Thorac Cancer 2025; 16:e70051. [PMID: 40229221 PMCID: PMC11996292 DOI: 10.1111/1759-7714.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Breast cancer (BC) and lung cancer are the two most common malignancies among women in China. As breast cancer diagnostic and therapeutic technologies continue to advance, the lifespan of patients with breast cancer has been extended, and the number of breast cancer patients with second primary lung cancer (SPLC) has increased. Furthermore, among women with SPLC, breast cancer stands as the most prevalent initial malignancy, and SPLC remains the predominant cause of mortality within this demographic. The aim of this retrospective study was to analyze the clinical characteristics of breast cancer with SPLC patients and to investigate postoperative survival and prognostic factors. This retrospective study analyzed 150 patients diagnosed with primary lung cancer in BC at one cancer center in China from January 2000 to December 2020. METHODS We assessed demographic data, cancer characteristics, treatment modalities, and survival outcomes. Survival curves were generated using the Kaplan-Meier method, and the significance of survival differences among selected variables was verified using the log-rank test. A univariate Cox regression analysis was used for estimating hazard ratios. A multivariate Cox regression analysis with a backward elimination method was used to estimate hazard ratios and to identify independent prognostic factors. RESULTS There were 29 cases (19.3%) of death. The median follow-up time for this cohort was 96.3 months. The median OS was calculated at 60.0 months, with survival rates at 1-, 3-, 5-, and 10-year marked at 89.7%, 65.5%, 44.8%, and 10.3%. The median time from BC surgical treatment to the occurrence of SPLC was observed at 4.5 months. A peak period of SPLC occurs in the first year after BC surgery. The median follow-up time from SPLC surgical treatment to death or the end of follow-up was 73.5 months. The median survival time from SPLC surgical treatment to death by any cause was 39.2 months, with survival rates at 1-, 3-, and 5-year marked at 86.2%, 51.7%, and 31.0%, and survival rates were 0% at the 9th year. The average age at BC diagnosis was 53.8 ± 10.4 years (range 25-81). 41.3% of patients had other chronic diseases. The average menarche age was 14.7 ± 1.5 years (range 11-20). 64.7% of patients had menopause. Independent prognostic factors for the BC with SPLC by multivariate analysis were the status of menopause and T-stage of SPLC. CONCLUSIONS Further analysis revealed that patients who were menopausal and had a poor T stage of SPLC had a higher mortality rate. Based on these findings, future studies should focus on the menstrual status, hormone levels, and pathological stage of SPLC in BC patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yao Fu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shuai Zhu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qian Hong
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenjing Huang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chen Chen
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Muxan Xu
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yijia Kang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jiagen Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Patel A, Dewani D, Jaiswal A, Yadav P, Reddy LS. Exploring Melatonin's Multifaceted Role in Polycystic Ovary Syndrome Management: A Comprehensive Review. Cureus 2023; 15:e48929. [PMID: 38106751 PMCID: PMC10725523 DOI: 10.7759/cureus.48929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder affecting a significant portion of the female population, characterized by hormonal imbalances, oxidative stress, sleep disturbances, and mood disorders. This review explores the multifaceted role of melatonin, a hormone primarily known for regulating circadian rhythms, in PCOS management. Melatonin's potential impact on hormonal balance, oxidative stress, sleep quality, and mood is comprehensively examined. It has been shown to enhance insulin sensitivity, regulate sex hormones, and influence gonadotropins, offering promise in addressing the intricate hormonal imbalances common in PCOS. As a potent antioxidant and anti-inflammatory agent, melatonin mitigates oxidative stress and its associated complications. Its role in improving sleep quality and mood can significantly enhance the psychological well-being and daily functioning of PCOS patients. We discuss the potential implications of melatonin as a complementary or adjunct therapy, alongside existing PCOS treatments, and its significance in improving the overall quality of life for individuals with this syndrome. While further research is needed, melatonin's multifaceted effects promise a brighter future for PCOS patients.
Collapse
Affiliation(s)
- Archan Patel
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Deepika Dewani
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arpita Jaiswal
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Pallavi Yadav
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Lucky Srivani Reddy
- Obstetrics and Gynaecology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Arabacı Tamer S, Altınoluk T, Emran M, Korkmaz S, Yüksel RG, Baykal Z, Dur ZS, Levent HN, Ural MA, Yüksel M, Çevik Ö, Ercan F, Yıldırım A, Yeğen BÇ. Melatonin Alleviates Ovariectomy-Induced Cardiovascular Inflammation in Sedentary or Exercised Rats by Upregulating SIRT1. Inflammation 2022; 45:2202-2222. [PMID: 35665875 DOI: 10.1007/s10753-022-01685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
We aimed to evaluate the impact of hormone replacement, melatonin, or exercise alone or their combination on oxidative damage and functional status of heart, brain, and aorta of ovariectomized (OVX) rats and to determine whether the signaling pathway is dependent on sirtuin-1 (SIRT1). Ovariectomized Sprague Dawley rats were orally given either a hormone replacement therapy (1 mg/kg/day,17β estradiol; HRT) or melatonin (4 mg/kg/day) or HRT + melatonin treatments or tap water, while each group was further divided into sedentary and exercise (30 min/5 days/week) groups. After the heart rate measurements and memory tests were performed, trunk blood was collected at the end of the 10th week to determine metabolic parameters in serum samples. Tissue samples of abdominal aorta, heart, and brain were taken for biochemical measurements and histopathological evaluation. Heart rates and memory performances of the OVX rats were not changed significantly by none of the applications. Melatonin treatment or its co-administration with HRT upregulated the expressions of IL-10 and SIRT1, reduced the expressions of IL-6 and TNF-α, and reduced DNA damage in the hearts and thoracic aortae of non-exercised rats. Co-administration of melatonin and HRT to exercised OVX rats reduced inflammatory response and upregulated SIRT1 expression in the aortic and cardiac tissues. The present study suggests that melatonin treatment, either alone or in combination with exercise and/or HRT, upregulates SIRT1 expression and alleviates oxidative injury and inflammation in the hearts and aortas of OVX rats. Melatonin should be considered in alleviating cardiovascular disease risk in postmenopausal women.
Collapse
Affiliation(s)
- Sevil Arabacı Tamer
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Tülin Altınoluk
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.,Department of Physiology, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Miray Emran
- Marmara University School of Medicine, Istanbul, Turkey
| | - Seda Korkmaz
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Zeynep Baykal
- Marmara University School of Medicine, Istanbul, Turkey
| | | | - Hilal Nişva Levent
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Mürüvvet Abbak Ural
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Meral Yüksel
- Marmara University Vocational School of Health Sciences, Istanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| | - Feriha Ercan
- Department of Histology & Embryology, Marmara University School of Medicine, Istanbul, Turkey
| | - Alper Yıldırım
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basibüyük Mah. Maltepe Basibüyük Yolu No. 9/1, 34854, Maltepe, Istanbul, Turkey.
| |
Collapse
|
4
|
Nyamsambuu A, Khan MA, Zhou X, Chen HC. Molecular mechanism of inhibitory effects of melatonin on prostate cancer cell proliferation, migration and invasion. PLoS One 2022; 17:e0261341. [PMID: 35061708 PMCID: PMC8782292 DOI: 10.1371/journal.pone.0261341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of prostate cancer (PCa) indicates an urgent need for the development of new effective drug therapy. There are limited options to treat the PCa, this study tried to determine a new therapy option for this acute cancer. Androgen-independent PCa cell lines PC3 and DU145 were treated with different melatonin concentrations (0.1~3.5 mM) for 1~3 days and assessed cell migration, cell invasion, cycle arrest in G0/G1 phase as well as apoptosis. We utilized RNA-seq technology to analyze the transcriptional misregulation pathways in DU145 prostate cancer cell line with melatonin (0.5 mM) treatment. Data revealed 20031 genes were up and down-regulated, there were 271 genes that differentially expressed: 97 up-regulated (P<0.05) and 174 down-regulated (P<0.05) genes. Furthermore, RNA-seq results manifested that the melatonin treatment led to a significant increase in the expression levels of HPGD, IL2Rβ, NGFR, however, IGFBP3 and IL6 (P <0.05) had decreased expression levels. The immunoblot assay revealed the expression of IL2Rβ and NGFR genes was up-regulated, qPCR confirmed the gene expression of HPGD and IL2RB were also up-regulated in Du145 cells. Consequently, we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in PCa cells responding to a NF-κB-activation, the significant results were indicated by the inhibition of the NF-kB pathway via IL2Rβ actions. Based on our investigation, it could be concluded that melatonin is a chemotherapeutic molecule against PCa and provides a new idea for clinical therapy of PCa.
Collapse
Affiliation(s)
- Altannavch Nyamsambuu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Md. Asaduzzaman Khan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Ezzati M, Velaei K, Kheirjou R. Melatonin and its mechanism of action in the female reproductive system and related malignancies. Mol Cell Biochem 2021; 476:3177-3190. [PMID: 33864572 DOI: 10.1007/s11010-021-04151-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the main product of pineal gland in vertebrates, is well known for its multifunctional role which has great influences on the reproductive system. Recent studies documented that melatonin is a powerful free radical scavenger that affects the reproductive system function and female infertility by MT1 and MT2 receptors. Furthermore, cancer researches indicate the influence of melatonin on the modulation of tumor cell signaling pathways resulting in growth inhibitor of the both in vivo/in vitro models. Cancer adjuvant therapy can also benefit from melatonin through therapeutic impact and decreasing the side effects of radiation and chemotherapy. This article reviews the scientific evidence about the influence of melatonin and its mechanism of action on the fertility potential, physiological alteration, and anticancer efficacy, during experimental and clinical studies.
Collapse
Affiliation(s)
- Maryam Ezzati
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Immunology Research Center, Tabriz University of Medical Sciences, PO. Box: 51376563833, Tabriz, Iran.
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Kheirjou
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Gulbahce-Mutlu E, Baltaci SB, Menevse E, Mogulkoc R, Baltaci AK. The Effect of Zinc and Melatonin Administration on Lipid Peroxidation, IL-6 Levels, and Element Metabolism in DMBA-Induced Breast Cancer in Rats. Biol Trace Elem Res 2021; 199:1044-1051. [PMID: 32572799 DOI: 10.1007/s12011-020-02238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the effects of zinc and melatonin administration on interleukin-6, lipid peroxidation parameters, and element metabolism in DMBA-induced breast cancer in female rats. A total of 42 recently weaned Wistar rats were divided into 5 groups as follows: control (group 1), DMBA control (group 2), DMBA + zinc (group 3), DMBA + melatonin (group 4), and DMBA + melatonin and zinc (group 5). Malondialdehyde (MDA) and glutathione (GSH) levels in breast tissue and blood samples were determined via spectrophotometric methods. In addition, iron, magnesium, zinc, and copper levels in serum samples were determined by atomic emission, and plasma interleukin-6 levels were determined by ELISA method. The highest tissue and plasma MDA and the lowest tissue and erythrocyte GSH levels found in the study were in group 2; the highest tissue and erythrocyte GSH levels and the lowest tissue and plasma MDA levels are in group 5 (P < 0.05). Iron, magnesium, and zinc levels of groups 3, 4, and 5 were higher than the DMBA group without administration (group 2), but the copper values were significantly lower (P < 0.05). The highest IL-6 levels were determined in group 2 while IL-6 levels in the DMBA group (G5) treated with combined melatonin and zinc were lower than all other breast cancer groups (P < 0.05). According to the findings obtained in this presented study, combined zinc and melatonin therapy can contribute to the prevention of tumor growth by improving the disruption in element metabolism and suppressing IL-6 levels and reducing tissue damage that causes the cancer.
Collapse
Affiliation(s)
- Elif Gulbahce-Mutlu
- Medical Facultuy, Department of Medical Biology, KTO Karatay University, Konya, Turkey
| | | | - Esma Menevse
- Department of Biochemistry, Faculty of Medicine, Selçuk University, Konya, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya, Turkey
| | | |
Collapse
|
7
|
Melatonin potentiates the cytotoxic effect of Neratinib in HER2 + breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 2021; 40:6273-6283. [PMID: 34556812 PMCID: PMC8566236 DOI: 10.1038/s41388-021-02015-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/27/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
Complete blockade of the HER2 protein itself and HER signaling network is critical to achieving effective HER2-targeted therapies. Despite the success of HER2-targeted therapies, the diseases will relapse in a significant fraction of patients with HER2+ breast cancers. How to improve the therapeutic efficacy of existing HER2-targeted agents remains an unmet clinical need. Here, we uncover a role of Melatonin in diminishing HER2-mediated signaling by destruction of HER2 protein. Mechanistically, Melatonin treatment attenuated the protective effect of the HSP90 chaperone complex on its client protein HER2, triggering ubiquitylation and subsequent endocytic lysosomal degradation of HER2. The inhibitory effect of Melatonin on HER2 signaling substantially enhanced the cytotoxic effects of the pan-HER inhibitor Neratinib in HER2+ breast cancer cells. Lastly, we demonstrate that dual inhibition of HER2 by combined use of Melatonin and Neratinib effectively blocked the growth of HER2+ breast tumor xenografts in vivo. Our findings shed light on the potential use of Melatonin in a novel dual HER2 blockade strategy for HER2+ breast cancer treatment.
Collapse
|
8
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ling L, Alattar A, Tan Z, Shah FA, Ali T, Alshaman R, Koh PO, Li S. A Potent Antioxidant Endogenous Neurohormone Melatonin, Rescued MCAO by Attenuating Oxidative Stress-Associated Neuroinflammation. Front Pharmacol 2020; 11:1220. [PMID: 32973495 PMCID: PMC7472569 DOI: 10.3389/fphar.2020.01220] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke is an acute neurological syndrome either due to permanent or temporary obstruction of blood. Such obstruction immediately triggers abrupt pathological cascading processes, which collectively lead to neuronal cell death. Oxidative stress and neuroinflammation in ischemic stroke are critical regulating events that ultimately lead to neuronal death. Complicated interplay exists between the two processes which occur through several stages. Most often, oxidative stress precedes the inflammatory mechanisms and includes several interconnected cascades that underlie the ischemic stroke pathology. In continuation of the previously published data, here, we further ruled out the protective role of melatonin in focal cerebral ischemic injury model. Administration of 5 mg/kg dose of melatonin 30 min prior to ischemia reduced brain infarction associated with sequentially rescued neuronal apoptosis. Furthermore, melatonin attenuated neuroinflammatory markers and reactive oxygen species (ROS), induced by ischemic stroke, via halting the key players of mitogen stress family (p38/JNK). Besides, melatonin modulated the endogenously produced antioxidant enzyme, thioredoxin (Trx) pathway. These broader therapeutic efficacies of melatonin suggest that melatonin could be further investigated for its diverse therapeutic actions with multiple targets in recovering, preventing and halting the detrimental outcomes of MCAO, such as elevated oxidative stress, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Li Ling
- Department of Endocrinology, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, China
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Tahir Ali
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Phil Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
10
|
Hasan M, Browne E, Guarinoni L, Darveau T, Hilton K, Witt-Enderby PA. Novel Melatonin, Estrogen, and Progesterone Hormone Therapy Demonstrates Anti-Cancer Actions in MCF-7 and MDA-MB-231 Breast Cancer Cells. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420924634. [PMID: 32636633 PMCID: PMC7318814 DOI: 10.1177/1178223420924634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
A novel melatonin, estrogen, and progesterone hormone therapy was developed as a safe bio-identical alternative hormone therapy for menopausal women based on the Women’s Health Initiative findings that PremPro™ increased breast cancer risk and mortality of all types of breast cancer in postmenopausal women. For HER2 breast cancer, melatonin, estrogen, and progesterone delayed tumor onset and reduced tumor incidence in neu female mice. For other breast cancers, its actions are unknown. In this study, melatonin, estrogen, and progesterone hormone therapy were assessed in human ER+ (MCF-7) and triple negative breast cancer (MDA-MB-231) cells, and found to decrease proliferation and migration of both breast cancer lines. Inhibition of MEK1/2 and 5 using PD98059 and BIX02189, respectively, inhibited proliferation and migration in MDA-MB-231 cells and proliferation in MCF-7 cells; however, when combined with melatonin, estrogen, and progesterone, BIX02189 blocked melatonin, estrogen, and progesterone–mediated inhibition of migration in MCF-7 cells and induced Elf-5. For MDA-MB-231 cells, BIX02189 combined with melatonin, estrogen, and progesterone inhibited proliferation and increased pERK1/2 and β1-INTEGRIN; levels of pERK5 remained low/nearly absent in both breast cancer lines. These findings demonstrate novel anti-cancer actions of melatonin, estrogen, and progesterone in ER+ and triple negative breast cancer cells through intricate MEK1/2- and MEK5-associated signaling cascades that favor anti-proliferation and anti-migration.
Collapse
Affiliation(s)
- Mahmud Hasan
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Erin Browne
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Laura Guarinoni
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Travis Darveau
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Katherine Hilton
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical, Administrative and Social Sciences, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|