1
|
Wen X, Shao Z, Chen X, Liu H, Qiu H, Ding X, Qu D, Wang H, Wang AZ, Zhang L. A multifunctional targeted nano-delivery system with radiosensitization and immune activation in glioblastoma. Radiat Oncol 2024; 19:119. [PMID: 39267113 PMCID: PMC11395210 DOI: 10.1186/s13014-024-02511-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Glioblastoma (GBM), the most common primary brain malignancy in adults, is notoriously difficult to treat due to several factors: tendency to be radiation resistant, the presence of the blood brain barrier (BBB) which limits drug delivery and immune-privileged status which hampers effective immune responses. Traditionally, high-dose irradiation (8 Gy) is known to effectively enhance anti-tumor immune responses, but its application is limited by the risk of severe brain damage. Currently, conventional dose segmentation (2 Gy) is the standard radiotherapy method, which does not fully exploit the potential of high-dose irradiation for immune activation. The hypothesis of our study posits that instead of directly applying high doses of radiation, which is risky, a strategy could be developed to harness the immune-stimulating benefits of high-dose irradiation indirectly. This involves using nanoparticles to enhance antigen presentation and immune responses in a safer manner. Angiopep-2 (A2) was proved a satisfactory BBB and brain targeting and Dbait is a small molecule that hijack DNA double strand break damage (DSB) repair proteins to make cancer cells more sensitive to radiation. In view of that, the following two nanoparticles were designed to combine immunity of GBM, radiation resistance and BBB innovatively. One is cationic liposome nanoparticle interacting with Dbait (A2-CL/Dbait NPs) for radiosensitization effect; the other is PLGA-PEG-Mal nanoparticle conjugated with OX40 antibody (A2-PLGA-PEG-Mal/anti-OX40 NPs) for tumor-derived protein antigens capture and optimistic immunoregulatory effect of anti-OX40 (which is known to enhance the activation and proliferation T cells). Both types of nanoparticles showed favorable targeting and low toxicity in experimental models. Specifically, the combination of A2-CL/Dbait NPs and A2-PLGA-PEG-Mal/anti-OX40 NPs led to a significant extension in the survival time and a significant tumor shrinkage of mice with GBM. The study demonstrates that combining these innovative nanoparticles with conventional radiotherapy can effectively address key challenges in GBM treatment. It represents a significant step toward more effective and safer therapeutic options for GBM patients.
Collapse
Affiliation(s)
- Xin Wen
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhiying Shao
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueting Chen
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong, China
| | - Hui Qiu
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
| | - Xin Ding
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Debao Qu
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China
| | - Hui Wang
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Longzhen Zhang
- Cancer Institute of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Kunpeng North Road No. 9, Xuzhou, 221000, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Jiangsu, China.
| |
Collapse
|
2
|
Targeted delivery of Dbait by an artificial extracellular vesicle for improved radiotherapy sensitivity of esophageal cancer. Am J Cancer Res 2023; 13:105-117. [PMID: 36777519 PMCID: PMC9906089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/24/2022] [Indexed: 02/14/2023] Open
Abstract
Intensification of radiotherapy has been shown to be an effective way for improving the therapeutic efficacy of radiation sensitive malignancies such as esophageal cancer (EC). The application of DNA Bait (Dbait), a type of DNA repair inhibitor, is an emerging strategy for radiosensitization. In this study, a Eca-109 cancerous cytomembrane-cloaked biomimetic drug delivery system (DDS), CMEC-Dbait, was designed and successfully fabricated, for targeted delivery of Dbait. Our systematic evaluation demonstrated that the ingenious artificial gastrointestinal extracellular vesicle owns neat spherical structure, proper particle size (154.6±5.5 nm) and surface charge (2.6±0.3 mV), favourable biocompatibility and immunocompatibility, being conducive to in vivo drug delivery. Besides, Eca-109 cytomembrane coating endowed CMEC-Dbait with effective targeting ability to homologous EC cells. Owing to these advantages, the biomimetic DDS was proved to be a potent radiosensitizer in vitro, indicated by remarkably reduced cell viability and enhanced cellular apoptosis by the combination therapy of radiation and CMEC-Dbait. The result was validated in vivo using mouse xenograft models of EC, the results illustrated that radiotherapy plus CMEC-Dbait significantly suppressed tumor growth and prolonged survival of tumor bearing mice. Western blotting results showed that CMEC-Dbait can significantly inhibit DNA damage repair signaling pathways by simulating DNA double-strand breaks both in and ex vivo. In conclusion, the versatile biomimetic CMEC-Dbait was characterized of low toxicity, excellent biocompatibility and satisfactory drug delivery efficiency, which is confirmed to be an ideal radiosensitizer for homologous cancer and merits further investigation in both pre-clinical and clinical studies.
Collapse
|
3
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
4
|
Zhang S, Jiao X, Heger M, Gao S, He M, Xu N, Zhang J, Zhang M, Yu Y, Ding B, Ding X. A tumor microenvironment-responsive micelle co-delivered radiosensitizer Dbait and doxorubicin for the collaborative chemo-radiotherapy of glioblastoma. Drug Deliv 2022; 29:2658-2670. [PMID: 35975300 PMCID: PMC9387324 DOI: 10.1080/10717544.2022.2108937] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is rather recalcitrant to existing therapies and effective interventions are needed. Here we report a novel microenvironment-responsive micellar system (ch-K5(s-s)R8-An) for the co-delivery of the radiosensitizer Dbait and the chemotherapeutic doxorubicin (DOX) to glioblastoma. Accordingly, the ch-K5(s-s)R8-An/(Dbait-DOX) micelles plus radiotherapy (RT) treatment resulted in a high degree of apoptosis and DNA damage, which significantly reduced cell viability and proliferation capacity of U251 cells to 64.0% and 16.3%, respectively. The angiopep-2-modified micelles exhibited substantial accumulation in brain-localized U251 glioblastoma xenografts in mice compared to angiopep-2-lacking micelles. The ch-K5(s-s)R8-An/(Dbait-DOX) + RT treatment group exhibited the smallest tumor size and most profound tumor tissue injury in orthotopic U251 tumors, leading to an increase in median survival time of U251 tumor-bearing mice from 26 days to 56 days. The ch-K5(s-s)R8-An/(Dbait-DOX) micelles can be targeted to brain-localized U251 tumor xenografts and sensitize the tumor to chemotherapy and radiotherapy, thereby overcoming the inherent therapeutic challenges associated with malignant glioblastoma.
Collapse
Affiliation(s)
- Shuyue Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxiu Jiao
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Shen Gao
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Mei He
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Xu
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jigang Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjian Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Yu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China
| | - Xueying Ding
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Paturel A, Hall J, Chemin I. Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers (Basel) 2022; 14:3806. [PMID: 35954469 PMCID: PMC9367559 DOI: 10.3390/cancers14153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary liver cancer is the sixth most common cancer in men and seventh in women, with hepatocellular carcinoma (HCC) being the most common form (75-85% of primary liver cancer cases) and the most frequent etiology being viral infections (HBV and HCV). In 2020, mortality represented 92% of the incidence-830,180 deaths for 905,677 new cases. Few treatment options exist for advanced or terminal-stage HCC, which will receive systemic therapy or palliative care. Although radiotherapy is used in the treatment of many cancers, it is currently not the treatment of choice for HCC, except in the palliative setting. However, as radiosensitizing drugs, such as inhibitors of DNA repair enzymes, could potentiate the effects of RT in HCC by exploiting the modulation of DNA repair processes found in this tumour type, RT and such drugs could provide a treatment option for HCC. In this review, we provide an overview of PARP1 involvement in DNA damage repair pathway and discuss its potential implication in HCC. In addition, the use of PARP inhibitors and PARP decoys is described for the treatment of HCC and, in particular, in HBV-related HCC.
Collapse
Affiliation(s)
| | | | - Isabelle Chemin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, 69008 Lyon, France
| |
Collapse
|
6
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
7
|
Gousias K, Theocharous T, Simon M. Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines 2022; 10:biomedicines10030564. [PMID: 35327366 PMCID: PMC8945784 DOI: 10.3390/biomedicines10030564] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
- Medical School, Westfälische Wilhelms University of Muenster, 48149 Muenster, Germany
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Correspondence: ; Tel.: +49-2306-773151
| | - Theocharis Theocharous
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical School, 33617 Bielefeld, Germany;
| |
Collapse
|
8
|
Gravina GL, Colapietro A, Mancini A, Rossetti A, Martellucci S, Ventura L, Di Franco M, Marampon F, Mattei V, Biordi LA, Otterlei M, Festuccia C. ATX-101, a Peptide Targeting PCNA, Has Antitumor Efficacy Alone or in Combination with Radiotherapy in Murine Models of Human Glioblastoma. Cancers (Basel) 2022; 14:289. [PMID: 35053455 PMCID: PMC8773508 DOI: 10.3390/cancers14020289] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cell proliferation requires the orchestrated actions of a myriad of proteins regulating DNA replication, DNA repair and damage tolerance, and cell cycle. Proliferating cell nuclear antigen (PCNA) is a master regulator which interacts with multiple proteins functioning in these processes, and this makes PCNA an attractive target in anticancer therapies. Here, we show that a cell-penetrating peptide containing the AlkB homolog 2 PCNA-interacting motif (APIM), ATX-101, has antitumor activity in a panel of human glioblastoma multiforme (GBM) cell lines and patient-derived glioma-initiating cells (GICs). Their sensitivity to ATX-101 was not related to cellular levels of PCNA, or p53, PTEN, or MGMT status. However, ATX-101 reduced Akt/mTOR and DNA-PKcs signaling, and a correlation between high Akt activation and sensitivity for ATX-101 was found. ATX-101 increased the levels of γH2AX, DNA fragmentation, and apoptosis when combined with radiotherapy (RT). In line with the in vitro results, ATX-101 strongly reduced tumor growth in two subcutaneous xenografts and two orthotopic GBM models, both as a single agent and in combination with RT. The ability of ATX-101 to sensitize cells to RT is promising for further development of this compound for use in GBM.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, Division of Radiation Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Alessandro Colapietro
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Andrea Mancini
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| | - Stefano Martellucci
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Cellular Pathology, University of L’Aquila, 67100 L’Aquila, Italy;
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Luca Ventura
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Martina Di Franco
- Division of Pathology, San Salvatore Hospital, 67100 L’Aquila, Italy; (L.V.); (M.D.F.)
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00100 Rome, Italy;
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy;
| | - Leda Assunta Biordi
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Medical Oncology, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Marit Otterlei
- APIM Therapeutics A/S, N-7100 Rissa, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), N-7006 Trondheim, Norway
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, Laboratory of Radiobiology, University of L’Aquila, 67100 L’Aquila, Italy; (A.C.); (A.M.); (A.R.)
| |
Collapse
|
9
|
Gomes ER, Franco MS. Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics 2022; 14:pharmaceutics14010105. [PMID: 35057001 PMCID: PMC8781448 DOI: 10.3390/pharmaceutics14010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is responsible for a significant proportion of death all over the world. Therefore, strategies to improve its treatment are highly desired. The use of nanocarriers to deliver anticancer treatments has been extensively investigated and improved since the approval of the first liposomal formulation for cancer treatment in 1995. Radiotherapy (RT) is present in the disease management strategy of around 50% of cancer patients. In the present review, we bring the state-of-the-art information on the combination of nanocarrier-assisted delivery of molecules and RT. We start with formulations designed to encapsulate single or multiple molecules that, once delivered to the tumor site, act directly on the cells to improve the effects of RT. Then, we describe formulations designed to modulate the tumor microenvironment by delivering oxygen or to boost the abscopal effect. Finally, we present how RT can be employed to trigger molecule delivery from nanocarriers or to modulate the EPR effect.
Collapse
Affiliation(s)
- Eliza Rocha Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Marina Santiago Franco
- Department of Radiation Sciences (DRS), Institute of Radiation Medicine (IRM), 85764 München, Germany
- Correspondence: ; Tel.: +49-89-3187-48767
| |
Collapse
|
10
|
Subecz C, Sun JS, Roger L. Effect of DNA repair inhibitor AsiDNA on the incidence of telomere fusion in crisis. Hum Mol Genet 2021; 30:172-181. [PMID: 33480989 PMCID: PMC8091035 DOI: 10.1093/hmg/ddab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 11/28/2022] Open
Abstract
Telomere fusions lead to a state of genomic instability, and are thought to drive clonal evolution and tumorigenesis. Telomere fusions occur via both Classical and Alternative Non-Homologous End Joining repair pathways. AsiDNA is a DNA repair inhibitor that acts by mimicking a DNA double strand break (DSB) and hijacking the recruitment of proteins involved in various DNA repair pathways. In this study, we investigated whether the inhibition of DSB-repair pathways by AsiDNA could prevent telomere fusions during crisis. The present study showed that AsiDNA decreased the frequency of telomere fusions without affecting the rate of telomere erosion. Further, it indicated that AsiDNA does not impact the choice of the repair pathway used for the fusion of short dysfunctional telomeres. AsiDNA is thought to prevent short telomeres from fusing by inhibiting DNA repair. An alternative, non-mutually exclusive possibility is that cells harbouring fusions preferentially die in the presence of AsiDNA, thus resulting in a reduction in fusion frequency. This important work could open the way for investigating the use of AsiDNA in the treatment of tumours that have short dysfunctional telomeres and/or are experiencing genomic instability.
Collapse
Affiliation(s)
- Chloé Subecz
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Jian-Sheng Sun
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| | - Lauréline Roger
- Structure and Instability of Genomes laboratory, "Muséum National d'Histoire Naturelle" (MNHN), Inserm U1154, CNRS UMR 7196, Paris, France
| |
Collapse
|
11
|
Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13030381. [PMID: 33498525 PMCID: PMC7864178 DOI: 10.3390/cancers13030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Targeting aberrant DNA repair in cancers in addition to transcription and replication is an area of interest for cancer researchers. Inhibition of DNA repair selectively in cancer cells leads to cytotoxic or cytostatic effects and overcomes survival advantages imparted by chromosomal translocations or mutations. In this review, we highlight the relevance of DNA repair-linked events in developmental diseases and cancers and also discuss mechanisms to overcome these events that participate in different cellular processes. Abstract Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.
Collapse
|
12
|
Ferreira S, Foray C, Gatto A, Larcher M, Heinrich S, Lupu M, Mispelter J, Boussin FD, Pouponnot C, Dutreix M. AsiDNA Is a Radiosensitizer with no Added Toxicity in Medulloblastoma Pediatric Models. Clin Cancer Res 2020; 26:5735-5746. [PMID: 32900798 DOI: 10.1158/1078-0432.ccr-20-1729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/08/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Medulloblastoma is an important cause of mortality and morbidity in pediatric oncology. Here, we investigated whether the DNA repair inhibitor, AsiDNA, could help address a significant unmet clinical need in medulloblastoma care, by improving radiotherapy efficacy without increasing radiation-associated toxicity. EXPERIMENTAL DESIGN To evaluate the brain permeability of AsiDNA upon systemic delivery, we intraperitoneally injected a fluorescence form of AsiDNA in models harboring brain tumors and in models still in development. Studies evaluated toxicity associated with combination of AsiDNA with radiation in the treatment of young developing animals at subacute levels, related to growth and development, and at chronic levels, related to brain organization and cognitive skills. Efficacy of the combination of AsiDNA with radiation was tested in two different preclinical xenografted models of high-risk medulloblastoma and in a panel of medulloblastoma cell lines from different molecular subgroups and TP53 status. Role of TP53 on the AsiDNA-mediated radiosensitization was analyzed by RNA-sequencing, DNA repair recruitment, and cell death assays. RESULTS Capable of penetrating young brain tissues, AsiDNA showed no added toxicity to radiation. Combination of AsiDNA with radiotherapy improved the survival of animal models more efficiently than increasing radiation doses. Medulloblastoma radiosensitization by AsiDNA was not restricted to a specific molecular group or status of TP53. Molecular mechanisms of AsiDNA, previously observed in adult malignancies, were conserved in pediatric models and resembled dose increase when combined with irradiation. CONCLUSIONS Our results suggest that AsiDNA is an attractive candidate to improve radiotherapy in medulloblastoma, with no indication of additional toxicity in developing brain tissues.
Collapse
Affiliation(s)
- Sofia Ferreira
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Chloe Foray
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Alberto Gatto
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique, UMR3664, Equipe Labellisée Ligue contre le Cancer, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie Paris 06, Centre National de la Recherche Scientifique, UMR3664, Paris, France
| | - Magalie Larcher
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Sophie Heinrich
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Mihaela Lupu
- Institut Curie, Research Center, PSL Research University, CNRS UMR 9187, INSERM U 1196, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 9187, INSERM U1196, Orsay, Paris, France
| | - Joel Mispelter
- Institut Curie, Research Center, PSL Research University, CNRS UMR 9187, INSERM U 1196, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 9187, INSERM U1196, Orsay, Paris, France
| | - François D Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Célio Pouponnot
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France.,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France. .,Institut Curie, Université Paris-Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, Paris, France
| |
Collapse
|
13
|
Biau J, Chautard E, Verrelle P, Dutreix M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front Oncol 2019; 9:1009. [PMID: 31649878 PMCID: PMC6795692 DOI: 10.3389/fonc.2019.01009] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Radiation therapy (RT) is widely used in cancer care strategies. Its effectiveness relies mainly on its ability to cause lethal damage to the DNA of cancer cells. However, some cancers have shown to be particularly radioresistant partly because of efficient and redundant DNA repair capacities. Therefore, RT efficacy might be enhanced by using drugs that can disrupt cancer cells' DNA repair machinery. Here we review the recent advances in the development of novel inhibitors of DNA repair pathways in combination with RT. A large number of these compounds are the subject of preclinical/clinical studies and target key enzymes involved in one or more DNA repair pathways. A totally different strategy consists of mimicking DNA double-strand breaks via small interfering DNA (siDNA) to bait the whole DNA repair machinery, leading to its global inhibition.
Collapse
Affiliation(s)
- Julian Biau
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont Ferrand, France.,Pathology Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,U1196, INSERM, UMR9187, CNRS, Orsay, France.,Radiotherapy Department, Institut Curie Hospital, Paris, France
| | - Marie Dutreix
- Institut Curie, PSL Research University, Centre de Recherche, Paris, France.,UMR3347, CNRS, Orsay, France.,U1021, INSERM, Orsay, France.,Université Paris Sud, Orsay, France
| |
Collapse
|