1
|
Aryanti C, Uwuratuw JA, Labeda I, Raharjo W, Lusikooy RE, Abdul Rauf M, Mappincara A, Sampetoding S, Kusuma MI, Syarifuddin E. The Mutation Portraits of Oncogenes and Tumor Supressor Genes in Predicting the Overall Survival in Pancreatic Cancer: A Bayesian Network Meta-Analysis. Asian Pac J Cancer Prev 2023; 24:2895-2902. [PMID: 37642079 PMCID: PMC10685232 DOI: 10.31557/apjcp.2023.24.8.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION In pancreatic cancer, the carcinogenesis can not be separated from genetics mutations. The portraits of genes alterations majorily including oncogenes (KRAS, HER2, PD-L1) and tumor supressor genes (P53, CDKN2A, SMAD4). Besides being notorious a screening marker, the genetic mutations were related to the prognosis of pancreatic cancer. The aim of this study is to determine the genetic mutations portrait in predicting the overall survival in pancreatic cancer. METHODS The network meta analysis (NMA) was registered in PROSPERO (CRD42023397976) and conducted in accordance with the PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) in addition of NMA extension guidance. Comprehensive searches were done including all studies which reported the overall survival of pancreatic cancer subjects with KRAS, HER2, PD-L1, P53, CDKN2A, SMAD4. Data were collected and analysis will be done based on Bayesian method, Markov Chain Monte Carlo algorithm, using BUGSnet package in R studio. Transivity was controlled by methods and consistency of the NMA will be fitted by deviance information criterion. Data analysis in NMA were presented in Sucra plot, league table, and forest plot. RESULTS Twenty-four studies were included in this NMA with 4613 total subjects. The NMA was conducted in random-effects, consistent, and convergence model. Relative to control, the genetic mutation of SMAD4 (HR 1.84; 95%CI 1.39-2.46), HER2 (HR 1.76; 95%CI 1.14-2.71), and KRAS (HR 1.7; 95%CI 1.19-2.48) were significant to have worse survival. The mutations of PD-L1, P53, and CDKN2A also showed poor survival, but not statistically significant compared to control. CONCLUSION In pancreatic cancer, the mutation of SMAD4 predicted the worst overall survival, compared to control, also mutation of HER2, KRAS, PD-L1, P53, and CDKN2A.
Collapse
Affiliation(s)
- Citra Aryanti
- Digestive Surgery Training Program, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Julianus Aboyaman Uwuratuw
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Ibrahim Labeda
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Warsinggih Raharjo
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Ronald Erasio Lusikooy
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Murny Abdul Rauf
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Andi Mappincara
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Samuel Sampetoding
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - M. Ihwan Kusuma
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| | - Erwin Syarifuddin
- Division of Digestive Surgery, Department of Surgery, Hasanuddin University, Dr. Wahidin Sudirohusodo General Hospital, Makassar, Sulawesi Selatan, Indonesia.
| |
Collapse
|
2
|
Osei-Bordom DC, Sachdeva G, Christou N. Liquid Biopsy as a Prognostic and Theranostic Tool for the Management of Pancreatic Ductal Adenocarcinoma. Front Med (Lausanne) 2022; 8:788869. [PMID: 35096878 PMCID: PMC8795626 DOI: 10.3389/fmed.2021.788869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) represent one of the deadliest cancers worldwide. Survival is still low due to diagnosis at an advanced stage and resistance to treatment. Herein, we review the main types of liquid biopsy able to help in both prognosis and adaptation of treatments.
Collapse
Affiliation(s)
- Daniel C Osei-Bordom
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, Birmingham, United Kingdom
| | - Gagandeep Sachdeva
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Niki Christou
- Department of General Surgery, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham, United Kingdom
- Department of General Surgery, University Hospital of Limoges, Limoges, France
- EA3842 CAPTuR Laboratory "Cell Activation Control, Tumor Progression and Therapeutic Resistance", Faculty of Medicine, Limoges, France
| |
Collapse
|
3
|
Cobo I, Tanaka T, Glass CK, Yeang C. Clonal hematopoiesis driven by DNMT3A and TET2 mutations: role in monocyte and macrophage biology and atherosclerotic cardiovascular disease. Curr Opin Hematol 2022; 29:1-7. [PMID: 34654019 PMCID: PMC8639635 DOI: 10.1097/moh.0000000000000688] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP), defined by the presence of somatic mutations in hematopoietic cells, is associated with advanced age and increased mortality due to cardiovascular disease. Gene mutations in DNMT3A and TET2 are the most frequently identified variants among patients with CHIP and provide selective advantage that spurs clonal expansion and myeloid skewing. Although DNMT3A and TET2 appear to have opposing enzymatic influence on DNA methylation, mounting data has characterized convergent inflammatory pathways, providing insights to how CHIP may mediate atherosclerotic cardiovascular disease (ASCVD). RECENT FINDINGS We review a multitude of studies that characterize aberrant inflammatory signaling as result of DNMT3A and TET2 deficiency in monocytes and macrophages, immune cells with prominent roles in atherosclerosis. Although specific DNA methylation signatures associated with these known epigenetic regulators have been identified, many studies have also characterized diverse modulatory functions of DNTM3A and TET2 that urge cell and context-specific experimental studies to further define how DNMT3A and TET2 may nonenzymatically activate inflammatory pathways with clinically meaningful consequences. SUMMARY CHIP, common in elderly individuals, provides an opportunity understand and potentially modify age-related chronic inflammatory ASCVD risk.
Collapse
Affiliation(s)
- Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego
| | - Tiffany Tanaka
- University of California San Diego, Moores Cancer Center
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California San Diego
| | - Calvin Yeang
- Sulpizio Cardiovascular Center, Division of Cardiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
van der Sijde F, Azmani Z, Besselink MG, Bonsing BA, de Groot JWB, Groot Koerkamp B, Haberkorn BCM, Homs MYV, van IJcken WFJ, Janssen QP, Lolkema MP, Luelmo SAC, Mekenkamp LJM, Mustafa DAM, van Schaik RHN, Wilmink JW, Vietsch EE, van Eijck CHJ. Circulating TP53 mutations are associated with early tumor progression and poor survival in pancreatic cancer patients treated with FOLFIRINOX. Ther Adv Med Oncol 2021; 13:17588359211033704. [PMID: 34422118 PMCID: PMC8377319 DOI: 10.1177/17588359211033704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Biomarkers predicting treatment response may be used to stratify pancreatic ductal adenocarcinoma (PDAC) patients for therapy. The aim of this study was to identify circulating tumor DNA (ctDNA) mutations that associate with tumor progression during FOLFIRINOX chemotherapy, and overall survival (OS). Methods: Circulating cell-free DNA was analyzed with a 57 gene next-generation sequencing panel using plasma samples of 48 PDAC patients of all disease stages. Patients received FOLFIRINOX as initial treatment. Chemotherapy response was determined on CT scans as disease control (n = 30) or progressive disease (n = 18) within eight cycles of FOLFIRINOX, based on RECIST 1.1 criteria. Results: Detection of a TP53 ctDNA mutation before start of FOLFIRINOX [odds ratio (OR) 10.51, 95% confidence interval (CI) 1.40–79.14] and the presence of a homozygous TP53 Pro72Arg germline variant (OR 6.98, 95% CI 1.31–37.30) were predictors of early tumor progression during FOLFIRINOX in multivariable analysis. Five patients presented with the combination of a TP53 ctDNA mutation before start of FOLFIRINOX and the homozygous Pro72Arg variant. All five patients showed progression during FOLFIRINOX. The combination of the TP53 mutation and TP53 germline variant was associated with shorter survival (median OS 4.4 months, 95% CI 2.6–6.2 months) compared with patients without any TP53 alterations (median OS 13.0 months, 95% CI 8.6–17.4 months). Conclusion: The combination of a TP53 ctDNA mutation before start of FOLFIRINOX and a homozygous TP53 Pro72Arg variant is a promising biomarker, associated with early tumor progression during FOLFIRINOX and poor OS. The results of this exploratory study need to be validated in an independent cohort.
Collapse
Affiliation(s)
- Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zakia Azmani
- Center for Biomics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marc G. Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Marjolein Y. V. Homs
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Quisette P. Janssen
- Department of Surgery, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Saskia A. C. Luelmo
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Leonie J. M. Mekenkamp
- Department of Medical Oncology, Medisch Spectrum Twente, Enschede, Overijssel, The Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology, Tumor Immuno-Pathology Laboratory, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
5
|
Huerta M, Roselló S, Sabater L, Ferrer A, Tarazona N, Roda D, Gambardella V, Alfaro-Cervelló C, Garcés-Albir M, Cervantes A, Ibarrola-Villava M. Circulating Tumor DNA Detection by Digital-Droplet PCR in Pancreatic Ductal Adenocarcinoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13050994. [PMID: 33673558 PMCID: PMC7956845 DOI: 10.3390/cancers13050994] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer is a digestive tumor that is most difficult to treat and carries one of the worst prognoses. The anatomical location of the pancreas makes it very difficult to obtain enough tumor material to establish a molecular diagnosis, so knowing the biology of this tumor and implementing new targeted-therapies is still a pending issue. The use of liquid biopsy, a blood sample test to detect circulating-tumor DNA fragments (ctDNA), is key to overcoming this difficulty and improving the evolution of this tumor. Liquid biopsies are equally representative of the tissue from which they come and allow relevant molecular and diagnostic information to be obtained in a faster and less invasive way. One challenge related to ctDNA is the lack of consistency in the study design. Moreover, ctDNA accounts for only a small percentage of the total cell-free circulating DNA and prior knowledge about particular mutations is usually required. Thus, our aim was to understand the current role and future perspectives of ctDNA in pancreatic cancer using digital-droplet PCR technology. Abstract Pancreatic cancer (PC) is one of the most devastating malignant tumors, being the seventh leading cause of cancer-related death worldwide. Researchers and clinicians are endeavoring to develop strategies for the early detection of the disease and the improvement of treatment results. Adequate biopsy is still challenging because of the pancreas’s poor anatomic location. Recently, circulating tumor DNA (ctDNA) could be identified as a liquid biopsy tool with huge potential as a non-invasive biomarker in early diagnosis, prognosis and management of PC. ctDNA is released from apoptotic and necrotic cancer cells, as well as from living tumor cells and even circulating tumor cells, and it can reveal genetic and epigenetic alterations with tumor-specific and individual mutation and methylation profiles. However, ctDNA sensibility remains a limitation and the accuracy of ctDNA as a biomarker for PC is relatively low and cannot be currently used as a screening or diagnostic tool. Increasing evidence suggests that ctDNA is an interesting biomarker for predictive or prognosis studies, evaluating minimal residual disease, longitudinal follow-up and treatment management. Promising results have been published and therefore the objective of our review is to understand the current role and the future perspectives of ctDNA in PC.
Collapse
Affiliation(s)
- Marisol Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
| | - Susana Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Ana Ferrer
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Clara Alfaro-Cervelló
- Department of Pathology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain;
| | - Marina Garcés-Albir
- Liver, Biliary and Pancreatic Unit, Department of Surgery, Hospital Clínico Universitario of Valencia, University of Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (L.S.); (M.G.-A.)
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain; (M.H.); (S.R.); (A.F.); (N.T.); (D.R.); (V.G.); (A.C.)
- CIBERONC, Medical Oncology Unit, INCLIVA Biomedical Research Institute, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963-862-894
| |
Collapse
|
6
|
Molecular and Metabolic Subtypes Correspondence for Pancreatic Ductal Adenocarcinoma Classification. J Clin Med 2020; 9:jcm9124128. [PMID: 33371431 PMCID: PMC7767410 DOI: 10.3390/jcm9124128] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, is an extremely lethal disease due to late diagnosis, aggressiveness and lack of effective therapies. Considering its intrinsic heterogeneity, patient stratification models based on transcriptomic and genomic signatures, with partially overlapping subgroups, have been established. Besides molecular alterations, PDAC tumours show a strong desmoplastic response, resulting in profound metabolic reprogramming involving increased glucose and amino acid consumption, as well as lipid scavenging and biosynthesis. Interestingly, recent works have also revealed the existence of metabolic subtypes with differential prognosis within PDAC, which correlated to defined molecular subclasses in patients: lipogenic subtype correlated with a classical/progenitor signature, while glycolytic tumours associated with the highly aggressive basal/squamous profile. Bioinformatic analyses have demonstrated that the representative genes of each metabolic subtype are up-regulated in PDAC samples and predict patient survival. This suggests a relationship between the genetic signature, metabolic profile, and aggressiveness of the tumour. Considering all this, defining metabolic subtypes represents a clear opportunity for patient stratification considering tumour functional behaviour independently of their mutational background.
Collapse
|