1
|
Zang Y, Zheng F, Feng L, Shi X, Chen X. Preoperatively Predicting PIT1 Expression in Pituitary Adenomas Using Habitat, Intra-tumoral and Peri-tumoral Radiomics Based on MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-024-01376-4. [PMID: 39904941 DOI: 10.1007/s10278-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/10/2024] [Accepted: 12/08/2024] [Indexed: 02/06/2025]
Abstract
The study aimed to predict expression of pituitary transcription factor 1 (PIT1) in pituitary adenomas using habitat, intra-tumoral and peri-tumoral radiomics models. A total of 129 patients with pituitary adenoma (training set, n = 103; test set, n = 26) were retrospectively enrolled. A total of 12, 18, 14, 13, and 14 radiomics features were selected from the ROIintra, ROIintra+peri (ROIintra+2mm, ROIintra+4mm, ROIintra+6mm), and ROIhabitat, respectively. Then, three machine learning algorithms were employed to develop radiomic models, including logistic regression (LR), support vector machines (SVM), and multilayer perceptron (MLP). The performances of the intra-tumoral, combined intra-tumoral and peri-tumoral, and habitat models were evaluated. The peritumoral region (ROI2mm, ROI4mm, ROI6mm) of the combined model with the highest performance was individually selected for further peritumoral analysis. Moreover, a deep learning radiomics nomogram (DLRN) was constructed incorporating clinical characteristics and the peri-tumoral and habitat models for individual prediction. The combined modelintra+2mm based on ROIintra+2mm achieved a better performance (AUC, 0.800) than that of the intra-tumoral model alone (AUC, 0.731). And the habitat model showed a higher performance (AUC, 0.806) than that of the intra-tumoral model. In addition, the performance of the peri-tumoral model based on ROI2mm was 0.694 in the testing set. Furthermore, the DLRN achieved the highest performance of 0.900 in the test set. The DLRN showed the best performance for PIT1 expression in pituitary adenomas, followed by the habitat, combined modelintra+2mm, intra-tumoral model, and peri-tumoral model based on ROI2mm, respectively. These different models are helpful for the model choice in clinical work.
Collapse
Affiliation(s)
- Yuying Zang
- Department of Radiology, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Limei Feng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyao Shi
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Ying Y, Yahya N, Abdul Manan H. Apparent Diffusion Coefficient (ADC) and Magnetic Resonance Imaging (MRI) Nomogram for Differentiating a Solitary Fibrous Tumor (World Health Organization Grade II) From an Angiomatous Meningioma. Cureus 2025; 17:e79470. [PMID: 40135019 PMCID: PMC11933727 DOI: 10.7759/cureus.79470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Accurate preoperative differentiation between intracranial solitary fibrous tumor (SFT, World Health Organization grade II) and angiomatous meningioma (AM) is crucial for surgical planning and prognosis prediction. While conventional magnetic resonance imaging (MRI) is widely used, distinguishing these tumors based on imaging alone remains challenging. This study aimed to evaluate clinical and MRI features to improve diagnostic accuracy between SFT and AM, focusing on the apparent diffusion coefficient (ADC) and conventional MRI parameters. METHODS A retrospective analysis was conducted on 51 patients (23 with SFT and 28 with AM) confirmed by pathology. Clinical and MRI characteristics were assessed using t-tests and chi-square tests. Logistic regression analysis was performed to identify independent predictors, and receiver operating characteristic (ROC) curve analysis evaluated diagnostic performance. A nomogram integrating ADC values with conventional MRI features was developed and validated using calibration curves. RESULTS Significant differences in tumor shape, cystic necrosis, T1-weighted imaging and T2-weighted imaging signal intensities, and ADC values were observed between SFT and AM (p < 0.05). Logistic regression analysis confirmed these factors as independent predictors, with ADC demonstrating the highest diagnostic performance at an optimal cutoff value of 1.08 × 10-³ mm²/second. The ROC analysis showed that combining ADC with conventional MRI features improved diagnostic accuracy. The calibration curve demonstrated strong agreement between nomogram predictions and actual outcomes. CONCLUSION Integrating ADC values with clinical and MRI features provides a reliable method for differentiating intracranial SFT from AM. This approach enhances diagnostic precision, aiding in optimized clinical decision-making and surgical planning.
Collapse
Affiliation(s)
- Yu Ying
- Department of Interventional Radiology, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, MYS
| | - Noorazrul Yahya
- Department of Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, National University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
3
|
Li X, Zhang H, Hu C, Hu L, Guo H, Chen H, Li G, Huang Q, Jiang S, Zhang S, Xing Z, Wang X. Prognostic significance of collagen content in solitary fibrous tumors of the central nervous system. Front Oncol 2024; 14:1450813. [PMID: 39600632 PMCID: PMC11588704 DOI: 10.3389/fonc.2024.1450813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose We aimed to explore the prognostic significance of collagen content in solitary fibrous tumors (SFTs) of the central nervous system (CNS) and preliminarily investigate its relationship with magnetic resonance imaging (MRI) features of SFTs. Methods Collagen content was identified using Masson's trichrome staining, and quantitatively assessed. Radiomic methods were applied to extract quantitative MRI features of SFTs, which were then analyzed in relation to collagen content. Results The collagen content in CNS SFTs was categorized into high- and low-content groups, with a cutoff value of 6%. Survival analysis indicated a positive correlation between collagen content and overall survival (OS). In multivariate Cox regression analysis, incorporating factors such as mitosis, necrosis, Ki67, and collagen content and other indicators, collagen content emerged as an independent prognostic factor. Collagen content demonstrated a negative correlation with tumor histological phenotype, Ki67, WHO grade, mitosis, necrosis, and brain invasion. Additionally, the signal intensity of SFTs on T2-weighted imaging (T2WI) decreased with increasing collagen content. Radiomics analysis identified 1,702 features from each patient's region of interest, with 12 features showing significant differences between the high and low collagen content groups. Among the quantitative parameters and radiomic models, the combined T1- and T2WI models exhibited the highest diagnostic performance. Conclusion These findings suggest that collagen content is an independent prognostic risk factor for OS. Furthermore, combined radiomic models based on T1-and T2WI sequences may offer a more comprehensive, objective, and accurate assessment of collagen content in CNS SFTs.
Collapse
Affiliation(s)
- Xiaoling Li
- Department of Pathology, The Second Hospital of Longyan, Longyan, Fujian, China
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Hua Zhang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengcong Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Liwen Hu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Huibin Guo
- Department of Pathology, The Second Hospital of Longyan, Longyan, Fujian, China
| | - Hongbao Chen
- Department of Pathology, The Second Hospital of Longyan, Longyan, Fujian, China
| | - Guoping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Qian Huang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shuie Jiang
- Department of Pathology, Jianning General Hospital, Sanming, Fujian, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhen Xing
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Xingfu Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, Jianning General Hospital, Sanming, Fujian, China
| |
Collapse
|
4
|
Chen L, Wang R, He J, Wu H, Zhang Y, Wu Y, Zhao T, Qu Y, Wu Y. Clinical outcomes of patients undergoing reoperation with solitary fibrous tumors/hemangiopericytomas and malignant progression of tumors. Neurosurg Rev 2024; 47:773. [PMID: 39387992 DOI: 10.1007/s10143-024-02956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE The purpose of this study was to analyze the clinical outcomes and malignant progression of tumors in patients who underwent reoperation for recurrent solitary fibrous tumors (SFTs) and hemangiopericytomas (HPCs). METHODS We identified 48 patients who underwent reoperation because of tumor recurrence at Tangdu Hospital between January 2010 and December 2021 and analyzed the clinical outcomes, namely, the rate of gross total resection (GTR), progression-free survival (PFS), overall survival (OS), malignant progression of tumors and radiotherapy. The survival curves for each group were plotted using the Kaplan‒Meier method and compared using log-rank tests. RESULTS Of the 48 patients (25 men and 23 women, mean age 49.5 ± 14.3 years), 25 experienced a second recurrence or metastasis, 15 of whom underwent a third surgery, and the remaining 10 patients who did not undergo surgery ultimately died after tumor progression. The median time (95% CI) to tumor recurrence was 40.0 (32.3-47.7) months after reoperation, with 3-, 5- and 10-year PFS rates of 54.6%, 29.5% and 14.8%, respectively. The median (95% CI) survival time was 70.0 (46.6-93.4) months, with 3-, 5- and 10-year survival rates of 67.9%, 55.1% and 36.7%, respectively. Among the 48 patients who underwent reoperation, 27 (56.3%) achieved GTR, and 21 (43.8%) achieved STR. Twelve patients in the GTR group (12/27, 44.4%) received radiotherapy after surgery, and 18 patients in the STR group (18/21, 85.7%) received radiotherapy. Of the 48 recurrent SFTs, 24 were classified as WHO grade 1, 14 were classified as WHO grade 2, and 10 were classified as WHO grade 3 based on 2021 WHO classification after the primary operation. After reoperation, 9 tumors developed malignant progression, including 4 WHO grade 1 tumors progressing to WHO grade 2 tumors, 1 WHO grade 1 tumor progressing to a WHO grade 3 tumor and 4 WHO grade 2 tumors progressing to WHO grade 3 tumors. CONCLUSIONS GTR after reoperation was associated with better PFS and OS compared to STR. However, the PFS after the third surgery was significantly shorter than that after the second surgery, and the rate of GTR also decreased. Malignant progression may occur after second or third tumor recurrence. Furthermore, compared with WHO grade 1 SFTs, WHO grade 2 and grade 3 SFTs significantly decreased PFS, but OS did not differ among the three groups. Radiotherapy did not prolong PFS or OS in patients who underwent reoperation.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China
| | - Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China
| | - JianQing He
- Department of Neurosurgery, The 904th Hospital of Joint Logistic Support Force, Wu xi, China
| | - Haiyang Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China
| | - Yunze Zhang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China
| | - Yang Wu
- Department of Neurosurgery, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China.
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, No.1 Xin Si Road, Xi'an, 710038, China.
| |
Collapse
|
5
|
Li M, Fu S, Du J, Han X, Duan C, Ren Y, Qiao Y, Tang Y. Preoperative MRI-based radiomic nomogram for distinguishing solitary fibrous tumor from angiomatous meningioma: a multicenter study. Front Oncol 2024; 14:1399270. [PMID: 39359426 PMCID: PMC11445187 DOI: 10.3389/fonc.2024.1399270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose This study evaluates the efficacy of radiomics-based machine learning methodologies in differentiating solitary fibrous tumor (SFT) from angiomatous meningioma (AM). Materials and methods A retrospective analysis was conducted on 171 pathologically confirmed cases (94 SFT and 77 AM) spanning from January 2009 to September 2020 across four institutions. The study comprised a training set (n=137) and a validation set (n=34). All patients underwent contrast-enhanced T1-weighted (CE-T1WI) and T2-weighted(T2WI) MRI scans, from which 1166 radiomics features were extracted. Subsequently, seventeen features were selected through minimum redundancy maximum relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO). Multivariate logistic regression analysis was employed to assess the independence of these features as predictors. A clinical model, established via both univariate and multivariate logistic regression based on MRI morphological features, was integrated with the optimal radiomics model to formulate a radiomics nomogram. The performance of the models was assessed utilizing the area under the receiver operating characteristic curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV). Results The radiomics nomogram demonstrated exceptional discriminative performance in the validation set, achieving an AUC of 0.989. This outperformance was evident when compared to both the radiomics algorithm (AUC= 0.968) and the clinical model (AUC = 0.911) in the same validation sets. Notably, the radiomics nomogram exhibited impressive values for ACC, SEN, and SPE at 97.1%, 93.3%, and 100%, respectively, in the validation set. Conclusions The machine learning-based radiomic nomogram proves to be highly effective in distinguishing between SFT and AM.
Collapse
Affiliation(s)
- Mengjie Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shengli Fu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Du
- Department of Radiology, Shizuishan First People's Hospital, Shizuishan, China
| | - Xiaoyu Han
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Chongfeng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yande Ren
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaqian Qiao
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yueshan Tang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Kalasauskas D, Kosterhon M, Kurz E, Schmidt L, Altmann S, Grauhan NF, Sommer C, Othman A, Brockmann MA, Ringel F, Keric N. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Sci Rep 2024; 14:20586. [PMID: 39232068 PMCID: PMC11374997 DOI: 10.1038/s41598-024-71200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
Preoperative identification of intracranial meningiomas with aggressive behaviour may help in choosing the optimal treatment strategy. Radiomics is emerging as a powerful diagnostic tool with potential applications in patient risk stratification. In this study, we aimed to compare the predictive value of conventional, semantic based and radiomic analyses to determine CNS WHO grade and early tumour relapse in intracranial meningiomas. We performed a single-centre retrospective analysis of intracranial meningiomas operated between 2007 and 2018. Recurrence within 5 years after Simpson Grade I-III resection was considered as early. Preoperative T1 CE MRI sequences were analysed conventionally by two radiologists. Additionally a semantic feature score based on systematic analysis of morphological characteristics was developed and a radiomic analysis were performed. For the radiomic model, tumour volume was extracted manually, 791 radiomic features were extracted. Eight feature selection algorithms and eight machine learning methods were used. Models were analysed using test and training datasets. In total, 226 patients were included. There were 21% CNS WHO grade 2 tumours, no CNS WHO grade 3 tumour, and 25 (11%) tumour recurrences were detected in total. In ROC analysis the best radiomic models demonstrated superior performance for determination of CNS WHO grade (AUC 0.930) and early recurrence (AUC 0.892) in comparison to the semantic feature score (AUC 0.74 and AUC 0.65) and conventional radiological analysis (AUC 0.65 and 0.54). The combination of human classifiers, semantic score and radiomic analysis did not markedly increase the model performance. Radiomic analysis is a promising tool for preoperative identification of aggressive and atypical intracranial meningiomas and could become a useful tool in the future.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Elena Kurz
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Leon Schmidt
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sebastian Altmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Nils F Grauhan
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Marc A Brockmann
- Department of Neuroradiology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Naureen Keric
- Department of Neurosurgery, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
7
|
Beutler BD, Lee J, Edminster S, Rajagopalan P, Clifford TG, Maw J, Zada G, Mathew AJ, Hurth KM, Artrip D, Miller AT, Assadsangabi R. Intracranial meningioma: A review of recent and emerging data on the utility of preoperative imaging for management. J Neuroimaging 2024; 34:527-547. [PMID: 39113129 DOI: 10.1111/jon.13227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 11/20/2024] Open
Abstract
Meningiomas are the most common neoplasms of the central nervous system, accounting for approximately 40% of all brain tumors. Surgical resection represents the mainstay of management for symptomatic lesions. Preoperative planning is largely informed by neuroimaging, which allows for evaluation of anatomy, degree of parenchymal invasion, and extent of peritumoral edema. Recent advances in imaging technology have expanded the purview of neuroradiologists, who play an increasingly important role in meningioma diagnosis and management. Tumor vascularity can now be determined using arterial spin labeling and dynamic susceptibility contrast-enhanced sequences, allowing the neurosurgeon or neurointerventionalist to assess patient candidacy for preoperative embolization. Meningioma consistency can be inferred based on signal intensity; emerging machine learning technologies may soon allow radiologists to predict consistency long before the patient enters the operating room. Perfusion imaging coupled with magnetic resonance spectroscopy can be used to distinguish meningiomas from malignant meningioma mimics. In this comprehensive review, we describe key features of meningiomas that can be established through neuroimaging, including size, location, vascularity, consistency, and, in some cases, histologic grade. We also summarize the role of advanced imaging techniques, including magnetic resonance perfusion and spectroscopy, for the preoperative evaluation of meningiomas. In addition, we describe the potential impact of emerging technologies, such as artificial intelligence and machine learning, on meningioma diagnosis and management. A strong foundation of knowledge in the latest meningioma imaging techniques will allow the neuroradiologist to help optimize preoperative planning and improve patient outcomes.
Collapse
Affiliation(s)
- Bryce D Beutler
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Lee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Sarah Edminster
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Priya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Thomas G Clifford
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan Maw
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Anna J Mathew
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kyle M Hurth
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Drew Artrip
- Department of Radiology and Imaging Services, University of Utah, Salt Lake City, Utah, USA
| | - Adam T Miller
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Reza Assadsangabi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhao Z, Nie C, Zhao L, Xiao D, Zheng J, Zhang H, Yan P, Jiang X, Zhao H. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Eur Radiol 2024; 34:2468-2479. [PMID: 37812296 PMCID: PMC10957672 DOI: 10.1007/s00330-023-10252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The purpose of this study was to develop and validate a nomogram combined multiparametric MRI and clinical indicators for identifying the WHO grade of meningioma. MATERIALS AND METHODS Five hundred and sixty-eight patients were included in this study, who were diagnosed pathologically as having meningiomas. Firstly, radiomics features were extracted from CE-T1, T2, and 1-cm-thick tumor-to-brain interface (BTI) images. Then, difference analysis and the least absolute shrinkage and selection operator were orderly used to select the most representative features. Next, the support vector machine algorithm was conducted to predict the WHO grade of meningioma. Furthermore, a nomogram incorporated radiomics features and valuable clinical indicators was constructed by logistic regression. The performance of the nomogram was assessed by calibration and clinical effectiveness, as well as internal validation. RESULTS Peritumoral edema volume and gender are independent risk factors for predicting meningioma grade. The multiparametric MRI features incorporating CE-T1, T2, and BTI features showed the higher performance for prediction of meningioma grade with a pooled AUC = 0.885 (95% CI, 0.821-0.946) and 0.860 (95% CI, 0.788-0.923) in the training and test groups, respectively. Then, a nomogram with a pooled AUC = 0.912 (95% CI, 0.876-0.961), combined radiomics score, peritumoral edema volume, and gender improved diagnostic performance compared to radiomics model or clinical model and showed good calibration as the true results. Moreover, decision curve analysis demonstrated satisfactory clinical effectiveness of the proposed nomogram. CONCLUSIONS A novel nomogram is simple yet effective in differentiating WHO grades of meningioma and thus can be used in patients with meningiomas. CLINICAL RELEVANCE STATEMENT We proposed a nomogram that included clinical indicators and multi-parameter radiomics features, which can accurately, objectively, and non-invasively differentiate WHO grading of meningioma and thus can be used in clinical work. KEY POINTS • The study combined radiomics features and clinical indicators for objectively predicting the meningioma grade. • The model with CE-T1 + T2 + brain-to-tumor interface features demonstrated the best predictive performance by investigating seven different radiomics models. • The nomogram potentially has clinical applications in distinguishing high-grade and low-grade meningiomas.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- International Education College of Henan University, Kaifeng, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Geriatric Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Tabassum M, Suman AA, Suero Molina E, Pan E, Di Ieva A, Liu S. Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review. Cancers (Basel) 2023; 15:3845. [PMID: 37568660 PMCID: PMC10417709 DOI: 10.3390/cancers15153845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.
Collapse
Affiliation(s)
- Mehnaz Tabassum
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Abdulla Al Suman
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Eric Suero Molina
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Department of Neurosurgery, University Hospital of Münster, 48149 Münster, Germany
| | - Elizabeth Pan
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia;
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (A.A.S.); (E.S.M.); (E.P.)
| |
Collapse
|
10
|
Maiuri F, Del Basso de Caro M. Update on the Diagnosis and Management of Meningiomas. Cancers (Basel) 2023; 15:3575. [PMID: 37509238 PMCID: PMC10377680 DOI: 10.3390/cancers15143575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This series of five articles (one original article and four reviews) focuses on the most recent and interesting research studies on the biomolecular and radiological diagnosis and the surgical and medical management of meningiomas [...].
Collapse
Affiliation(s)
- Francesco Maiuri
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, 80131 Naples, Italy
| | - Marialaura Del Basso de Caro
- Department of Advanced Biomedical Sciences, Section of Pathology, School of Medicine, University "Federico II" of Naples, 80131 Naples, Italy
| |
Collapse
|
11
|
Koechli C, Zwahlen DR, Schucht P, Windisch P. Radiomics and machine learning for predicting the consistency of benign tumors of the central nervous system: A systematic review. Eur J Radiol 2023; 164:110866. [PMID: 37207398 DOI: 10.1016/j.ejrad.2023.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE Predicting the consistency of benign central nervous system (CNS) tumors prior to surgery helps to improve surgical outcomes. This review summarizes and analyzes the literature on using radiomics and/or machine learning (ML) for consistency prediction. METHOD The Medical Literature Analysis and Retrieval System Online (MEDLINE) database was screened for studies published in English from January 1st 2000. Data was extracted according to the PRISMA guidelines and quality of the studies was assessed in compliance with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS Eight publications were included focusing on pituitary macroadenomas (n = 5), pituitary adenomas (n = 1), and meningiomas (n = 2) using a retrospective (n = 6), prospective (n = 1), and unknown (n = 1) study design with a total of 763 patients for the consistency prediction. The studies reported an area under the curve (AUC) of 0.71-0.99 for their respective best performing model regarding the consistency prediction. Of all studies, four articles validated their models internally whereas none validated their models externally. Two articles stated making data available on request with the remaining publications lacking information with regard to data availability. CONCLUSIONS The research on consistency prediction of CNS tumors is still at an early stage regarding the use of radiomics and different ML techniques. Best-practice procedures regarding radiomics and ML need to be followed more rigorously to facilitate the comparison between publications and, accordingly, the possible implementation into clinical practice in the future.
Collapse
Affiliation(s)
- Carole Koechli
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland; Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland.
| | - Daniel R Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| |
Collapse
|
12
|
El-Abtah ME, Murayi R, Lee J, Recinos PF, Kshettry VR. Radiological Differentiation Between Intracranial Meningioma and Solitary Fibrous Tumor/Hemangiopericytoma: A Systematic Literature Review. World Neurosurg 2023; 170:68-83. [PMID: 36403933 DOI: 10.1016/j.wneu.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intracranial solitary fibrous tumor (SFT) is characterized by aggressive local behavior and high post-resection recurrence rates. It is difficult to distinguish between SFT and meningiomas, which are typically benign. The goal of this study was to systematically review radiological features that differentiate meningioma and SFT. METHODS We performed a systematic review in accordance with PRISMA guidelines to identify studies that used imaging techniques to identify radiological differentiators of SFT and meningioma. RESULTS Eighteen studies with 1565 patients (SFT: 662; meningiomas: 903) were included. The most commonly used imaging modality was diffusion weighted imaging, which was reported in 11 studies. Eight studies used a combination of diffusion weighted imaging and T1- and T2-weighted sequences to distinguish between SFT and meningioma. Compared to all grades/subtypes of meningioma, SFT is associated with higher apparent diffusion coefficient, presence of narrow-based dural attachments, lack of dural tail, less peritumoral brain edema, extensive serpentine flow voids, and younger age at initial diagnosis. Tumor volume was a poor differentiator of SFT and meningioma, and overall, there were less consensus findings in studies exclusively comparing angiomatous meningiomas and SFT. CONCLUSIONS Clinicians can differentiate SFT from meningiomas on preoperative imaging by looking for higher apparent diffusion coefficient, lack of dural tail/narrow-based dural attachment, less peritumoral brain edema, and vascular flow voids on neuroimaging, in addition to younger age at diagnosis. Distinguishing between angiomatous meningioma and SFT is much more challenging, as both are highly vascular pathologies. Tumor volume has limited utility in differentiating between SFT and various grades/subtypes of meningioma.
Collapse
Affiliation(s)
- Mohamed E El-Abtah
- Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Roger Murayi
- Department of Neurological Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonathan Lee
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pablo F Recinos
- Department of Neurological Surgery and Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Varun R Kshettry
- Department of Neurological Surgery and Rosa Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA; Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
13
|
Hwang SN. Editorial for “Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Scott N. Hwang
- Department of Radiology PennState Health Milton S Hershey Medical Center Hershey Pennsylvania USA
| |
Collapse
|
14
|
Guo Z, Tian Z, Shi F, Xu P, Zhang J, Ling C, Zeng Q. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. J Magn Reson Imaging 2022. [PMID: 36259547 DOI: 10.1002/jmri.28494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Meningiomas are frequently accompanied by peritumoral edema (PTE). The potential value of radiomic features of edema region in meningioma grading has not been investigated. PURPOSE To investigate whether radiomic features of edema region contribute to grading meningiomas with PTE. STUDY TYPE Retrospective. POPULATION A total of 444 patients including 196 grade II and 248 WHO grade I meningiomas: 356 patients for training, 88 for validation. FIELD STRENGTH/SEQUENCE A 1.5-T/3.0-T, noncontrast T1-weighted (T1WI), T2-weighted (T2WI), contrast-enhanced T1-weighted (T1CE) spin echo sequences. ASSESSMENT A total of 851 radiomic features were extracted from each sequence on each region (tumor and edema region). These features were integrated by region respectively. Three subsets of clinical-radiomic features were constructed by joining clinical information (sex, age, tumor volume, and edema volume) and radiomic features of three regions: tumor, edema, and combined subsets. For each subset, features were filtered by the least absolute shrinkage and selection operator (LASSO) and Random Forest algorithm. Top 20 features of each subset were finally selected. STATISTICAL TESTS Stochastic Gradient Boosting, Random Forest, and Bagged AdaBoost predictive models were built based on each subset. Discriminative abilities of models were quantified using receiver operating characteristics (ROC) and the area under the curve (AUC). A P value < 0.05 was considered statistically significant. RESULTS Random Forest model based on combined subset (AUC [95% CI] = 0.880 [0.807-0.953]) had the best discriminative ability in grading meningiomas among the final models. The best model of edema subset and tumor subset were Random Forest model (AUC [95% CI] = 0.864 [0.791-0.938]) and Stochastic Gradient Boosting model (AUC [95% CI] = 0.844 [0.760-0.928]), respectively. DATA CONCLUSION Radiomic features of edema region may contribute to grading meningiomas with PTE. The Random Forest model based on combined subset surpasses the best model based on tumor or edema subset regarding grading meningiomas with PTE. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Zhige Guo
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China.,Department of Neurosurgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhongyu Tian
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China
| | - Feina Shi
- Department of Neurology, Sir Runrun Shaw Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China
| | - Penglei Xu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China.,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China.,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chenhan Ling
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China.,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiang Zeng
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University school of Medicine, Hangzhou, Zhejiang, China.,Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Sixteen-Year Follow-Up in a Cavernous Sinus Hemangiopericytoma: Improved Outcomes over Radiotherapy Advances. Brain Sci 2022; 12:brainsci12091209. [PMID: 36138945 PMCID: PMC9497113 DOI: 10.3390/brainsci12091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Intracranial hemangiopericytomas are rare tumors, accounting for 1% of all central nervous system malignancies. This tumor is considered at high risk of local and also distant metastases. Surgical excision is the gold standard for treatment, but it is seldom curative by itself. Adjuvant radiotherapy is often recommended. We report an overview and update of the available literature on one such rare but aggressive mesenchymal tumor, using the case of a 46-year-old woman affected by hemangiopericytoma of the cavernous sinus surgically removed and treated with adjuvant radiotherapy at our institution. After seven years, the patient underwent a local recurrence and was treated with exeresis and Gamma Knife radiotherapy. Sixteen years after the initial diagnosis, she is still well with stable disease.
Collapse
|
16
|
Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization. Cancers (Basel) 2022; 14:cancers14112605. [PMID: 35681585 PMCID: PMC9179263 DOI: 10.3390/cancers14112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Meningiomas are typically benign, common extra-axial tumors of the central nervous system. Routine clinical assessment by radiologists presents some limitations regarding long-term patient outcome prediction and risk stratification. Given the exponential growth of interest in radiomics and artificial intelligence in medical imaging, numerous studies have evaluated the potential of these tools in the setting of meningioma imaging. These were aimed at the development of reliable and reproducible models based on quantitative data. Although several limitations have yet to be overcome for their routine use in clinical practice, their innovative potential is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging. Abstract Meningiomas are the most common extra-axial tumors of the central nervous system (CNS). Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists, typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to outcome prediction and risk stratification. The acquisition of this information could help the referring clinician in the decision-making process and selection of the appropriate treatment. Following the increased attention and potential of radiomics and artificial intelligence in the healthcare domain, including oncological imaging, researchers have investigated their use over the years to overcome the current limitations of imaging. The aim of these new tools is the replacement of subjective and, therefore, potentially variable medical image analysis by more objective quantitative data, using computational algorithms. Although radiomics has not yet fully entered clinical practice, its potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging.
Collapse
|
17
|
Brunasso L, Ferini G, Bonosi L, Costanzo R, Musso S, Benigno UE, Gerardi RM, Giammalva GR, Paolini F, Umana GE, Graziano F, Scalia G, Sturiale CL, Di Bonaventura R, Iacopino DG, Maugeri R. A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review. Life (Basel) 2022; 12:life12040586. [PMID: 35455077 PMCID: PMC9026541 DOI: 10.3390/life12040586] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background: In recent decades, the application of machine learning technologies to medical imaging has opened up new perspectives in neuro-oncology, in the so-called radiomics field. Radiomics offer new insight into glioma, aiding in clinical decision-making and patients’ prognosis evaluation. Although meningiomas represent the most common primary CNS tumor and the majority of them are benign and slow-growing tumors, a minor part of them show a more aggressive behavior with an increased proliferation rate and a tendency to recur. Therefore, their treatment may represent a challenge. Methods: According to PRISMA guidelines, a systematic literature review was performed. We included selected articles (meta-analysis, review, retrospective study, and case–control study) concerning the application of radiomics method in the preoperative diagnostic and prognostic algorithm, and planning for intracranial meningiomas. We also analyzed the contribution of radiomics in differentiating meningiomas from other CNS tumors with similar radiological features. Results: In the first research stage, 273 papers were identified. After a careful screening according to inclusion/exclusion criteria, 39 articles were included in this systematic review. Conclusions: Several preoperative features have been identified to increase preoperative intracranial meningioma assessment for guiding decision-making processes. The development of valid and reliable non-invasive diagnostic and prognostic modalities could have a significant clinical impact on meningioma treatment.
Collapse
Affiliation(s)
- Lara Brunasso
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
- Correspondence:
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy;
| | - Lapo Bonosi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto E. Benigno
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa M. Gerardi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe R. Giammalva
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe E. Umana
- Gamma Knife Center, Trauma Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy;
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Carmelo L. Sturiale
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Rina Di Bonaventura
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Domenico G. Iacopino
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
18
|
Chen Z, Ye N, Jiang N, Yang Q, Wanggou S, Li X. Deep Learning Model for Intracranial Hemangiopericytoma and Meningioma Classification. Front Oncol 2022; 12:839567. [PMID: 35311127 PMCID: PMC8927090 DOI: 10.3389/fonc.2022.839567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Intracranial hemangiopericytoma/solitary fibrous tumor (SFT/HPC) is a rare type of neoplasm containing malignancies of infiltration, peritumoral edema, bleeding, or bone destruction. However, SFT/HPC has similar radiological characteristics as meningioma, which had different clinical managements and outcomes. This study aims to discriminate SFT/HPC and meningioma via deep learning approaches based on routine preoperative MRI. Methods We enrolled 236 patients with histopathological diagnosis of SFT/HPC (n = 144) and meningioma (n = 122) from 2010 to 2020 in Xiangya Hospital. Radiological features were extracted manually, and a radiological diagnostic model was applied for classification. And a deep learning pretrained model ResNet-50 was adapted to train T1-contrast images for predicting tumor class. Deep learning model attention mechanism was visualized by class activation maps. Results Our study reports that SFT/HPC was found to have more invasion to venous sinus (p = 0.001), more cystic components (p < 0.001), and more heterogeneous enhancement patterns (p < 0.001). Deep learning model achieved a high classification accuracy of 0.889 with receiver-operating characteristic curve area under the curve (AUC) of 0.91 in the validation set. Feature maps showed distinct clustering of SFT/HPC and meningioma in the training and test cohorts, respectively. And the attention of the deep learning model mainly focused on the tumor bulks that represented the solid texture features of both tumors for discrimination.
Collapse
Affiliation(s)
- Ziyan Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Ningrong Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Nian Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Galldiks N, Angenstein F, Werner JM, Bauer EK, Gutsche R, Fink GR, Langen KJ, Lohmann P. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathol 2022; 32:e13015. [PMID: 35213083 PMCID: PMC8877736 DOI: 10.1111/bpa.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
21
|
Fan Y, Liu P, Li Y, Liu F, He Y, Wang L, Zhang J, Wu Z. Non-Invasive Preoperative Imaging Differential Diagnosis of Intracranial Hemangiopericytoma and Angiomatous Meningioma: A Novel Developed and Validated Multiparametric MRI-Based Clini-Radiomic Model. Front Oncol 2022; 11:792521. [PMID: 35059316 PMCID: PMC8763962 DOI: 10.3389/fonc.2021.792521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Accurate preoperative differentiation of intracranial hemangiopericytoma and angiomatous meningioma can greatly assist operation plan making and prognosis prediction. In this study, a clini-radiomic model combining radiomic and clinical features was used to distinguish intracranial hemangiopericytoma and hemangioma meningioma preoperatively. METHODS A total of 147 patients with intracranial hemangiopericytoma and 73 patients with angiomatous meningioma from the Tiantan Hospital were retrospectively reviewed and randomly assigned to training and validation sets. Radiomic features were extracted from MR images, the elastic net and recursive feature elimination algorithms were applied to select radiomic features for constructing a fusion radiomic model. Subsequently, multivariable logistic regression analysis was used to construct a clinical model, then a clini-radiomic model incorporating the fusion radiomic model and clinical features was constructed for individual predictions. The calibration, discriminating capacity, and clinical usefulness were also evaluated. RESULTS Six significant radiomic features were selected to construct a fusion radiomic model that achieved an area under the curve (AUC) value of 0.900 and 0.900 in the training and validation sets, respectively. A clini-radiomic model that incorporated the radiomic model and clinical features was constructed and showed good discrimination and calibration, with an AUC of 0.920 in the training set and 0.910 in the validation set. The analysis of the decision curve showed that the fusion radiomic model and clini-radiomic model were clinically useful. CONCLUSIONS Our clini-radiomic model showed great performance and high sensitivity in the differential diagnosis of intracranial hemangiopericytoma and angiomatous meningioma, and could contribute to non-invasive development of individualized diagnosis and treatment for these patients.
Collapse
Affiliation(s)
- Yanghua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing, China
| | - Panpan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yiping Li
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Feng Liu
- Department of Neurosurgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Yu He
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Li N, Mo Y, Huang C, Han K, He M, Wang X, Wen J, Yang S, Wu H, Dong F, Sun F, Li Y, Yu Y, Zhang M, Guan X, Xu X. A Clinical Semantic and Radiomics Nomogram for Predicting Brain Invasion in WHO Grade II Meningioma Based on Tumor and Tumor-to-Brain Interface Features. Front Oncol 2021; 11:752158. [PMID: 34745982 PMCID: PMC8570084 DOI: 10.3389/fonc.2021.752158] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
Background Brain invasion in meningioma has independent associations with increased risks of tumor progression, lesion recurrence, and poor prognosis. Therefore, this study aimed to construct a model for predicting brain invasion in WHO grade II meningioma by using preoperative MRI. Methods One hundred seventy-three patients with brain invasion and 111 patients without brain invasion were included. Three mainstream features, namely, traditional semantic features and radiomics features from tumor and tumor-to-brain interface regions, were acquired. Predictive models correspondingly constructed on each feature set or joint feature set were constructed. Results Traditional semantic findings, e.g., peritumoral edema and other four features, had comparable performance in predicting brain invasion with each radiomics feature set. By taking advantage of semantic features and radiomics features from tumoral and tumor-to-brain interface regions, an integrated nomogram that quantifies the risk factor of each selected feature was constructed and had the best performance in predicting brain invasion (area under the curve values were 0.905 in the training set and 0.895 in the test set). Conclusions This study provided a clinically available and promising approach to predict brain invasion in WHO grade II meningiomas by using preoperative MRI.
Collapse
Affiliation(s)
- Ning Li
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiology, Fuyang District First People's Hospital, Hangzhou, China
| | - Yan Mo
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Chencui Huang
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Kai Han
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Mengna He
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolan Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyu Yang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Dong
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenglei Sun
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Yiming Li
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Yizhou Yu
- Deepwise AI Lab, Beijing Deepwise & League of PHD Technology Co., Ltd., Beijing, China
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Zhao Z, Xiao D, Nie C, Zhang H, Jiang X, Jecha AR, Yan P, Zhao H. Development of a Nomogram Based on Preoperative Bi-Parametric MRI and Blood Indices for the Differentiation Between Cystic-Solid Pituitary Adenoma and Craniopharyngioma. Front Oncol 2021; 11:709321. [PMID: 34307178 PMCID: PMC8300562 DOI: 10.3389/fonc.2021.709321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background Given the similarities in clinical manifestations of cystic-solid pituitary adenomas (CS-PAs) and craniopharyngiomas (CPs), this study aims to establish and validate a nomogram based on preoperative imaging features and blood indices to differentiate between CS-PAs and CPs. Methods A departmental database was searched to identify patients who had undergone tumor resection between January 2012 and December 2020, and those diagnosed with CS-PAs or CPs by histopathology were included. Preoperative magnetic resonance imaging (MRI) features as well as blood indices were retrieved and analyzed. Radiological features were extracted from the tumor on contrast-enhanced T1 (CE-T1) weighted and T2 weighted sequences. The two independent samples t-test and principal component analysis (PCA) were used for feature selection, data dimension reduction, and radiomics signature building. Next, the radiomics signature was put in five classification models for exploring the best classifier with superior identification performance. Multivariate logistic regression analysis was then used to establish a radiomic-clinical model containing radiomics and hematological features, and the model was presented as a nomogram. The performance of the radiomics-clinical model was assessed by calibration curve, clinical effectiveness as well as internal validation. Results A total of 272 patients were included in this study: 201 with CS-PAs and 71 with CPs. These patients were randomized into training set (n=182) and test set (n=90). The radiomics signature, which consisted of 18 features after dimensionality reduction, showed superior discrimination performance in 5 different classification models. The area under the curve (AUC) values of the training set and the test set obtained by the radiomics signature are 0.92 and 0.88 in the logistic regression model, 0.90 and 0.85 in the Ridge classifier, 0.88 and 0.82 in the stochastic gradient descent (SGD) classifier, 0.78 and 0.85 in the linear support vector classification (Linear SVC), 0.93 and 0.86 in the multilayers perceptron (MLP) classifier, respectively. The predictive factors of the nomogram included radiomic signature, age, WBC count, and FIB. The nomogram showed good discrimination performance (with an AUC of 0.93 in the training set and 0.90 in the test set) and good calibration. Moreover, decision curve analysis (DCA) demonstrated satisfactory clinical effectiveness of the proposed radiomic-clinical nomogram. Conclusions A personalized nomogram containing radiomics signature and blood indices was proposed in this study. This nomogram is simple yet effective in differentiating between CS-PAs and CPs and thus can be used in routine clinical practice.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Geriatric Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ali Rajab Jecha
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Won SY, Park YW, Ahn SS, Moon JH, Kim EH, Kang SG, Chang JH, Kim SH, Lee SK. Quality assessment of meningioma radiomics studies: Bridging the gap between exploratory research and clinical applications. Eur J Radiol 2021; 138:109673. [PMID: 33774441 DOI: 10.1016/j.ejrad.2021.109673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To evaluate the quality of radiomics studies on meningiomas, using a radiomics quality score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), and the Image Biomarker Standardization Initiative (IBSI). METHODS PubMed MEDLINE and Embase were searched to identify radiomics studies on meningiomas. Of 138 identified articles, 25 relevant original research articles were included. Studies were scored according to the RQS, TRIPOD guidelines, and items in IBSI. RESULTS Only four studies (16 %) performed external validation. The mean RQS was 5.6 out of 36 (15.4 %), and the basic adherence rate was 26.8 %. The adherence rate was low for stating biological correlation (4%), conducting calibration statistics (12 %), multiple segmentation (16 %), and stating potential clinical utility (16 %). None of the studies conducted a test‒retest or phantom study, stated a comparison to a 'gold standard', conducted prospective studies or cost-effectivity analysis, or opened code and data to the public, resulting in low RQS. The overall adherence rate for TRIPOD was 54.1 %, with low scores for reporting the title (4%), abstract (0%), blind assessment of the outcome (8%), and explaining the sample size (0%). According to IBSI items, only 6 (24 %), 6 (24 %), and 3 (12 %) studies performed N4 bias-field correction, isovoxel resampling, and grey-level discretization, respectively. No study performed skull stripping. CONCLUSION The quality of radiomics studies for meningioma is insufficient. Acknowledgement of RQS, TRIPOD, and IBSI reporting guidelines may improve the quality of meningioma radiomics studies and enable their clinical application.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
25
|
Evaluation of Resection Margin after Image-Guided Dural Tail Resection in Convexity Meningiomas. J Clin Med 2021; 10:jcm10061177. [PMID: 33799819 PMCID: PMC8000745 DOI: 10.3390/jcm10061177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Infiltration of adjacent dura with meningioma cells is a common phenomenon. Wide resection of the dural tail (DT) to achieve a gross total resection is a general recommendation. We aimed to investigate a tumor cell infiltration of the DT after image-guided resection of convexity meningiomas. The study’s inclusion criteria were the diagnosis of convexity meningioma, planned Simpson I° resection, and an identifiable DT. Intraoperative image-guidance was applied to identify the outer edge of the DT and to guide resection. After resection, en-bloc specimen or four samples of outermost pieces of DT in case of piecemeal resection were sent for histological analysis. In addition to resection margin infiltration, the radiological extent of DT, radiomic characteristics (109 in total), histology, and demographic data were assessed. Hierarchical clustering was used to generate patient clusters for radiomic analysis. Twenty-two patients were included in the study, while 20 (91%) were female. The mean age was 54.2 (Standard deviation (SD) 13.9, range 30–85) years. En-bloc resection could be achieved in 4 patients. The remaining patients received piecemeal resection. 2 DT samples were omitted due to tumor infiltration of the superior sagittal sinus. None of the en-bloc resection samples demonstrated dural infiltration on the resection margin. Tumor cells were detected in 4 of 70 (5.7%) dural tail samples and could not be excluded in another 5 of 70 (7.1%). No tumor recurrences were detected at follow-up MRI examinations after a mean follow-up of 27.5 (SD 13.2, range 0 to 50.0) months. There was no significant association between DT infiltration and histological subtype or patient characteristics and between DT extent and tumor infiltration. Clustering according to radiomic characteristics was not associated with tumor infiltration (p = 0.89). The radiological dural tail does not reliably outline the extent of tumor cell infiltration in convexity meningiomas. Hence, the extent of dural tail resection should not exclusively be guided by preoperative radiological appearance.
Collapse
|
26
|
Kunimatsu A, Yasaka K, Akai H, Sugawara H, Kunimatsu N, Abe O. Texture Analysis in Brain Tumor MR Imaging. Magn Reson Med Sci 2021; 21:95-109. [PMID: 33692222 PMCID: PMC9199980 DOI: 10.2463/mrms.rev.2020-0159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Texture analysis, as well as its broader category radiomics, describes a variety of techniques for image analysis that quantify the variation in surface intensity or patterns, including some that are imperceptible to the human visual system. Cerebral gliomas have been most rigorously studied in brain tumors using MR-based texture analysis (MRTA) to determine the correlation of various clinical measures with MRTA features. Promising results in cerebral gliomas have been shown in the previous MRTA studies in terms of the correlation with the World Health Organization grades, risk stratification in gliomas, and the differentiation of gliomas from other brain tumors. Multiple MRTA studies in gliomas have repeatedly shown high performance of entropy, a measure of the randomness in image intensity values, of either histogram- or gray-level co-occurrence matrix parameters. Similarly, researchers have applied MRTA to other brain tumors, including meningiomas and pediatric posterior fossa tumors. However, the value of MRTA in the clinical use remains undetermined, probably because previous studies have shown only limited reproducibility of the result in the real world. The low-to-modest generalizability may be attributed to variations in MRTA methods, sampling bias that originates from single-institution studies, and overfitting problems to a limited number of samples. To enhance the reliability and reproducibility of MRTA studies, researchers have realized the importance of standardizing methods in the field of radiomics. Another advancement is the recent development of a comprehensive assessment system to ensure the quality of a radiomics study. These two-way approaches will secure the validity of upcoming MRTA studies. The clinical use of texture analysis in brain MRI will be accelerated by these continuous efforts.
Collapse
Affiliation(s)
- Akira Kunimatsu
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Department of Radiology, The University of Tokyo Hospital
| | - Koichiro Yasaka
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Department of Radiology, The University of Tokyo Hospital
| | - Hiroyuki Akai
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Department of Radiology, The University of Tokyo Hospital
| | - Haruto Sugawara
- Department of Radiology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo.,Department of Radiology, The University of Tokyo Hospital
| | - Natsuko Kunimatsu
- Department of Radiology, International University of Health and Welfare, Mita Hospital
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
27
|
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021; 63:1293-1304. [PMID: 33649882 PMCID: PMC8295153 DOI: 10.1007/s00234-021-02668-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-operative brain MRI. Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02. Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodological quality are required prior to their introduction in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02668-0.
Collapse
|