1
|
Chen L, Wang Z, Meng Y, Zhao C, Wang X, Zhang Y, Zhou M. A clinical-radiomics nomogram based on multisequence MRI for predicting the outcome of patients with advanced nasopharyngeal carcinoma receiving chemoradiotherapy. Front Oncol 2024; 14:1460426. [PMID: 39634263 PMCID: PMC11615067 DOI: 10.3389/fonc.2024.1460426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Problem Nasopharyngeal carcinoma (NPC) is a common malignant tumor with high heterogeneity and is mainly treated with chemoradiotherapy. It is important to predict the outcome of patients with advanced NPC after chemoradiotherapy to devise customized treatment strategies. Traditional MRI methods have limited predictive power, and better predictive models are needed. Aim To evaluate the predictive value of a clinical-radiomics nomogram based on multisequence MRI in predicting the outcome of advanced NPC patients receiving chemoradiotherapy. Methods This prospective study included a retrospective analysis of 118 patients with advanced NPC who underwent MRI prior to chemoradiotherapy. The primary endpoint was progression-free survival (PFS). The maximum ROIs of lesions at the same level were determined via axial T2-weighted imaging short-time inversion recovery (T2WI-STIR), contrast-enhanced T1-weighted imaging (CE-T1WI), and diffusion-weighted imaging (DWI) with solid tumor components, and the radiomic features were extracted. After feature selection, the radiomics score was calculated, and a nomogram was constructed combining the radiomics score with the clinical features. The diagnostic efficacy of the model was evaluated by the area under the receiver operating characteristic curve (AUC), and the clinical application value of the nomogram was evaluated by decision curve analysis (DCA) and a correction curve. Patients were divided into a high-risk group and a low-risk group, and the median risk score calculated by the joint prediction model was used as the cutoff value. Kaplan-Meier analysis and the log-rank test were used to compare the differences in survival curves between the two groups. Results The AUCs of the nomogram model constructed by the combination of the radiomics score and neutrophil-to-lymphocyte ratio (NLR) and T stage in the training group and validation group were 0.897 (95% CI: 0.825-0.968) and 0.801 (95% CI: 0.673-0.929), respectively. Kaplan-Meier survival analysis demonstrated that the model effectively stratified patients into high- and low-risk groups, with significant differences in prognosis. Conclusion This clinical-radiomics nomogram based on multisequence MRI offers a noninvasive, effective tool for predicting the outcome of advanced NPC patients receiving chemoradiotherapy, promoting individualized treatment approaches.
Collapse
Affiliation(s)
- Liucheng Chen
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyuan Wang
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Ying Meng
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Cancan Zhao
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Xuelian Wang
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Yan Zhang
- School of Medical Imaging, Bengbu Medical University, Bengbu, Anhui, China
| | - Muye Zhou
- Department of Radiology, The First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Dang LH, Hung SH, Le NTN, Chuang WK, Wu JY, Huang TC, Le NQK. Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2474-2489. [PMID: 38689151 PMCID: PMC11522233 DOI: 10.1007/s10278-024-01109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Recurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment. From the contrast-enhanced T1-weighted images before and after treatment, 3404 radiomics features were extracted. These features were not only derived from the primary lesion but also from the adjacent lymph nodes surrounding the tumor. We conducted appropriate feature selection pipelines, followed by Cox proportional hazards models for survival analysis. Model evaluation was performed using receiver operating characteristic (ROC) analysis, the Kaplan-Meier method, and nomogram construction. Our study unveiled several crucial predictors of NPC survival, notably highlighting the synergistic combination of pre- and post-treatment data in both clinical and radiomics assessments. Our prediction model demonstrated robust performance, with an accuracy of AUCs of 0.66 (95% CI: 0.536-0.779) in the training cohort, 0.717 (95% CI: 0.536-0.883) in the testing cohort, and 0.827 (95% CI: 0.684-0.948) in validation cohort in prognosticating patient outcomes. Our study presented a novel and effective prediction model for NPC survival, leveraging both pre- and post-treatment clinical data in conjunction with MRI features. Its constructed nomogram provides potentially significant implications for NPC research, offering clinicians a valuable tool for individualized treatment planning and patient counseling.
Collapse
Affiliation(s)
- Luong Huu Dang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Shih-Han Hung
- Department of Otolaryngology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nhi Thao Ngoc Le
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei, Taiwan
| | - Wei-Kai Chuang
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-You Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ting-Chieh Huang
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, Taiwan.
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Deng Q, Hou Y, Zhang X, Zan H. A systematic review of the predictive value of radiomics for nasopharyngeal carcinoma prognosis. Medicine (Baltimore) 2024; 103:e39302. [PMID: 39213210 PMCID: PMC11365615 DOI: 10.1097/md.0000000000039302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/18/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Radiomics has been widely used in the study of tumours, which has predictive and prognostic value in nasopharyngeal carcinoma (NPC). Therefore, we collected relevant literature to explore the role of current radiomics in predicting the prognosis of NPC. METHODS We performed a systematic literature review and meta-analysis in accordance with the preferred reporting items in the systematic evaluation and meta-analysis guidelines. We included papers on radiomics published before May 5, 2024, to evaluate the predictive ability of radiomics for the prognosis of NPC. The methodological quality of the included articles was evaluated using the radiomics quality score. The area under the curve (AUC), combined sensitivity and combined specificity were used to evaluate the ability of radiomics models to predict the prognosis of NPC. RESULTS A total of 20 studies met the inclusion criteria for the current systematic review, and 13 papers were included in the meta-analysis. The radiomics quality score ranged from 7 to 20 (maximum score: 36). The diagnostic test forest plots showed that the diagnostic OR of radiology was 11.04 (95% CI: 5.11-23.87), while the ORs for sensitivity and 1-specificity were 0.75 (95% CI: 0.73-0.78) and 0.74 (95% CI: 0.72-0.76), respectively. It cannot be determined whether the combined model was superior to the radiomics model for predicting the prognosis of NPC. It is unclear whether the fact that the radiomics model was composed of features extracted from MRI is due to CT. The AUC of PFS was larger than that of disease-free survival (P < .05). The overall AUC value is 0.8265. CONCLUSION This study summarized all the studies that examined the predictive value of radiomics for NPC prognosis. Based on the summarized AUC values, as well as sensitivity and 1-specificity, it can be concluded that radiomics has good performance in predicting the prognosis of NPC. Radiomics models have certain advantages in predicting the effectiveness of PFS compared to predicting disease-free survival. It cannot be determined whether the combination model is superior to the radiomics model in predicting NPC prognosis, nor can it be determined whether imaging methods have differences in predictive ability. The findings confirmed and provided further evidence supporting the effectiveness of radiomics for the prediction of cancer prognosis.
Collapse
Affiliation(s)
- Qicheng Deng
- Department of Otolaryngology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan Province, China
| | - Yijun Hou
- The Third People’s Hospital of Mianyang City, Mianyang, Sichuan Province, China
| | - Xi Zhang
- Nanchong Central Hospital, Sichuan Province, Nanchong, China
| | - Hongyu Zan
- Department of Otolaryngology, Public Health Clinical Center of Chengdu, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Tam SY, Tang FH, Chan MY, Lai HC, Cheung S. Prognosis Prediction in Head and Neck Squamous Cell Carcinoma by Radiomics and Clinical Information. Biomedicines 2024; 12:1646. [PMID: 39200111 PMCID: PMC11352052 DOI: 10.3390/biomedicines12081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024] Open
Abstract
(1) Background: head and neck squamous cell carcinoma (HNSCC) is a common cancer whose prognosis is affected by its heterogeneous nature. We aim to predict 5-year overall survival in HNSCC radiotherapy (RT) patients by integrating radiomic and clinical information in machine-learning models; (2) Methods: HNSCC radiotherapy planning computed tomography (CT) images with RT structures were obtained from The Cancer Imaging Archive. Radiomic features and clinical data were independently analyzed by five machine-learning algorithms. The results were enhanced through a voted ensembled approach. Subsequently, a probability-weighted enhanced model (PWEM) was generated by incorporating both models; (3) Results: a total of 299 cases were included in the analysis. By receiver operating characteristic (ROC) curve analysis, PWEM achieved an area under the curve (AUC) of 0.86, which outperformed both radiomic and clinical factor models. Mean decrease accuracy, mean decrease Gini, and a chi-square test identified T stage, age, and disease site as the most important clinical factors in prognosis prediction; (4) Conclusions: our radiomic-clinical combined model revealed superior performance when compared to radiomic and clinical factor models alone. Further prospective research with a larger sample size is warranted to implement the model for clinical use.
Collapse
Affiliation(s)
- Shing-Yau Tam
- School of Medical and Health Sciences, Tung Wah College, Hong Kong
| | - Fuk-Hay Tang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong
| | | | | | | |
Collapse
|
5
|
Sim Y, Sohn B, Kim S, Kim HR, Hong MH, Kim J, Lee SK, Lim SM. Radiomics and PD-L1 expression predict immunotherapy benefits in patients with head and neck squamous cell carcinoma. Future Oncol 2024; 20:2869-2878. [PMID: 38861311 PMCID: PMC11572203 DOI: 10.1080/14796694.2024.2342226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/09/2024] [Indexed: 06/12/2024] Open
Abstract
Aim: To evaluate the performance of MRI-derived radiomic risk score (RRS) and PD-L1 expression to predict overall survival (OS) and progression-free survival (PFS) of patients with recurrent head and neck squamous cell carcinoma receiving nivolumab therapy.Materials & methods: Three hundred forty radiomic features from pretreatment MRI were used to construct the RRS. The integrated area under the receiver operating characteristic curve (iAUC) was calculated to evaluate the performance of the RRS and PD-L1.Results: The RRS showed iAUCs of 0.69 and 0.57 for OS and PFS, respectively. PD-L1 expression showed iAUCs of 0.61 and 0.62 for OS and PFS, respectively.Conclusion: RRS and PD-L1 potentially predict the OS and PFS of patients with recurrent head and neck squamous cell carcinoma receiving nivolumab therapy.
Collapse
Affiliation(s)
- Yongsik Sim
- Department of Radiology & Research Institute of Radiological Science & Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Beomseok Sohn
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sooyon Kim
- Department of Statistics & Data Science, Yonsei University, Seoul, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jinna Kim
- Department of Radiology & Research Institute of Radiological Science & Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology & Research Institute of Radiological Science & Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Wang CK, Wang TW, Lu CF, Wu YT, Hua MW. Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis. Diagnostics (Basel) 2024; 14:924. [PMID: 38732337 PMCID: PMC11082984 DOI: 10.3390/diagnostics14090924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This meta-analysis investigates the prognostic value of MRI-based radiomics in nasopharyngeal carcinoma treatment outcomes, specifically focusing on overall survival (OS) variability. The study protocol was registered with INPLASY (INPLASY202420101). Initially, a systematic review identified 15 relevant studies involving 6243 patients through a comprehensive search across PubMed, Embase, and Web of Science, adhering to PRISMA guidelines. The methodological quality was assessed using the Quality in Prognosis Studies (QUIPS) tool and the Radiomics Quality Score (RQS), highlighting a low risk of bias in most domains. Our analysis revealed a significant average concordance index (c-index) of 72% across studies, indicating the potential of radiomics in clinical prognostication. However, moderate heterogeneity was observed, particularly in OS predictions. Subgroup analyses and meta-regression identified validation methods and radiomics software as significant heterogeneity moderators. Notably, the number of features in the prognosis model correlated positively with its performance. These findings suggest radiomics' promising role in enhancing cancer treatment strategies, though the observed heterogeneity and potential biases call for cautious interpretation and standardization in future research.
Collapse
Affiliation(s)
- Chih-Keng Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Ting-Wei Wang
- School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Chia-Fung Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, 155, Sec. 2, Li-Nong St. Beitou Dist., Taipei 112304, Taiwan
| | - Man-Wei Hua
- Department of Otolaryngology-Head and Neck Surgery, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| |
Collapse
|
7
|
Mokhtari A, Casale R, Salahuddin Z, Paquier Z, Guiot T, Woodruff HC, Lambin P, Van Laethem JL, Hendlisz A, Bali MA. Development of Clinical Radiomics-Based Models to Predict Survival Outcome in Pancreatic Ductal Adenocarcinoma: A Multicenter Retrospective Study. Diagnostics (Basel) 2024; 14:712. [PMID: 38611625 PMCID: PMC11011556 DOI: 10.3390/diagnostics14070712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE This multicenter retrospective study aims to identify reliable clinical and radiomic features to build machine learning models that predict progression-free survival (PFS) and overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) patients. METHODS Between 2010 and 2020 pre-treatment contrast-enhanced CT scans of 287 pathology-confirmed PDAC patients from two sites of the Hopital Universitaire de Bruxelles (HUB) and from 47 hospitals within the HUB network were retrospectively analysed. Demographic, clinical, and survival data were also collected. Gross tumour volume (GTV) and non-tumoral pancreas (RPV) were semi-manually segmented and radiomics features were extracted. Patients from two HUB sites comprised the training dataset, while those from the remaining 47 hospitals of the HUB network constituted the testing dataset. A three-step method was used for feature selection. Based on the GradientBoostingSurvivalAnalysis classifier, different machine learning models were trained and tested to predict OS and PFS. Model performances were assessed using the C-index and Kaplan-Meier curves. SHAP analysis was applied to allow for post hoc interpretability. RESULTS A total of 107 radiomics features were extracted from each of the GTV and RPV. Fourteen subgroups of features were selected: clinical, GTV, RPV, clinical & GTV, clinical & GTV & RPV, GTV-volume and RPV-volume both for OS and PFS. Subsequently, 14 Gradient Boosting Survival Analysis models were trained and tested. In the testing dataset, the clinical & GTV model demonstrated the highest performance for OS (C-index: 0.72) among all other models, while for PFS, the clinical model exhibited a superior performance (C-index: 0.70). CONCLUSIONS An integrated approach, combining clinical and radiomics features, excels in predicting OS, whereas clinical features demonstrate strong performance in PFS prediction.
Collapse
Affiliation(s)
- Ayoub Mokhtari
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Roberto Casale
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Zohaib Salahuddin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
| | - Zelda Paquier
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Guiot
- Medical Physics Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Precision Medicine, GROW—Research Institute for Oncology and Reproduction, Maastricht University, 6220MD Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229HX Maastricht, The Netherlands
| | - Jean-Luc Van Laethem
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Alain Hendlisz
- Department of Gastroenterology and Digestive Oncology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Maria Antonietta Bali
- Radiology Department, Institut Jules Bordet Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
8
|
Tamehisa T, Sato S, Sakai T, Maekawa R, Tanabe M, Ito K, Sugino N. Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes. Obstet Gynecol 2024; 143:358-365. [PMID: 38061038 DOI: 10.1097/aog.0000000000005475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data. METHODS This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set. RESULTS The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes. CONCLUSION We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.
Collapse
Affiliation(s)
- Tetsuro Tamehisa
- Department of Obstetrics and Gynecology and the Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Jayawickrama SM, Ranaweera PM, Pradeep RGGR, Jayasinghe YA, Senevirathna K, Hilmi AJ, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer Rep (Hoboken) 2024; 7:e2045. [PMID: 38522008 PMCID: PMC10961052 DOI: 10.1002/cnr2.2045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Precision healthcare has entered a new era because of the developments in personalized medicine, especially in the diagnosis and treatment of head and neck squamous cell carcinoma (HNSCC). This paper explores the dynamic landscape of personalized medicine as applied to HNSCC, encompassing both current developments and future prospects. RECENT FINDINGS The integration of personalized medicine strategies into HNSCC diagnosis is driven by the utilization of genetic data and biomarkers. Epigenetic biomarkers, which reflect modifications to DNA that can influence gene expression, have emerged as valuable indicators for early detection and risk assessment. Treatment approaches within the personalized medicine framework are equally promising. Immunotherapy, gene silencing, and editing techniques, including RNA interference and CRISPR/Cas9, offer innovative means to modulate gene expression and correct genetic aberrations driving HNSCC. The integration of stem cell research with personalized medicine presents opportunities for tailored regenerative approaches. The synergy between personalized medicine and technological advancements is exemplified by artificial intelligence (AI) and machine learning (ML) applications. These tools empower clinicians to analyze vast datasets, predict patient responses, and optimize treatment strategies with unprecedented accuracy. CONCLUSION The developments and prospects of personalized medicine in HNSCC diagnosis and treatment offer a transformative approach to managing this complex malignancy. By harnessing genetic insights, biomarkers, immunotherapy, gene editing, stem cell therapies, and advanced technologies like AI and ML, personalized medicine holds the key to enhancing patient outcomes and ushering in a new era of precision oncology.
Collapse
Affiliation(s)
| | | | | | | | - Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| | | | | | - Kehinde Kazeem Kanmodi
- School of DentistryUniversity of RwandaKigaliRwanda
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- Cephas Health Research Initiative IncIbadanNigeria
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
| | - Ruwan Duminda Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Department of Oral Medicine and Periodontology, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| |
Collapse
|
10
|
Wang Z, Fang M, Zhang J, Tang L, Zhong L, Li H, Cao R, Zhao X, Liu S, Zhang R, Xie X, Mai H, Qiu S, Tian J, Dong D. Radiomics and Deep Learning in Nasopharyngeal Carcinoma: A Review. IEEE Rev Biomed Eng 2024; 17:118-135. [PMID: 37097799 DOI: 10.1109/rbme.2023.3269776] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Nasopharyngeal carcinoma is a common head and neck malignancy with distinct clinical management compared to other types of cancer. Precision risk stratification and tailored therapeutic interventions are crucial to improving the survival outcomes. Artificial intelligence, including radiomics and deep learning, has exhibited considerable efficacy in various clinical tasks for nasopharyngeal carcinoma. These techniques leverage medical images and other clinical data to optimize clinical workflow and ultimately benefit patients. In this review, we provide an overview of the technical aspects and basic workflow of radiomics and deep learning in medical image analysis. We then conduct a detailed review of their applications to seven typical tasks in the clinical diagnosis and treatment of nasopharyngeal carcinoma, covering various aspects of image synthesis, lesion segmentation, diagnosis, and prognosis. The innovation and application effects of cutting-edge research are summarized. Recognizing the heterogeneity of the research field and the existing gap between research and clinical translation, potential avenues for improvement are discussed. We propose that these issues can be gradually addressed by establishing standardized large datasets, exploring the biological characteristics of features, and technological upgrades.
Collapse
|
11
|
Li H, Huang W, Wang S, Balasubramanian PS, Wu G, Fang M, Xie X, Zhang J, Dong D, Tian J, Chen F. Comprehensive integrated analysis of MR and DCE-MR radiomics models for prognostic prediction in nasopharyngeal carcinoma. Vis Comput Ind Biomed Art 2023; 6:23. [PMID: 38036750 PMCID: PMC10689317 DOI: 10.1186/s42492-023-00149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Although prognostic prediction of nasopharyngeal carcinoma (NPC) remains a pivotal research area, the role of dynamic contrast-enhanced magnetic resonance (DCE-MR) has been less explored. This study aimed to investigate the role of DCR-MR in predicting progression-free survival (PFS) in patients with NPC using magnetic resonance (MR)- and DCE-MR-based radiomic models. A total of 434 patients with two MR scanning sequences were included. The MR- and DCE-MR-based radiomics models were developed based on 289 patients with only MR scanning sequences and 145 patients with four additional pharmacokinetic parameters (volume fraction of extravascular extracellular space (ve), volume fraction of plasma space (vp), volume transfer constant (Ktrans), and reverse reflux rate constant (kep) of DCE-MR. A combined model integrating MR and DCE-MR was constructed. Utilizing methods such as correlation analysis, least absolute shrinkage and selection operator regression, and multivariate Cox proportional hazards regression, we built the radiomics models. Finally, we calculated the net reclassification index and C-index to evaluate and compare the prognostic performance of the radiomics models. Kaplan-Meier survival curve analysis was performed to investigate the model's ability to stratify risk in patients with NPC. The integration of MR and DCE-MR radiomic features significantly enhanced prognostic prediction performance compared to MR- and DCE-MR-based models, evidenced by a test set C-index of 0.808 vs 0.729 and 0.731, respectively. The combined radiomics model improved net reclassification by 22.9%-52.6% and could significantly stratify the risk levels of patients with NPC (p = 0.036). Furthermore, the MR-based radiomic feature maps achieved similar results to the DCE-MR pharmacokinetic parameters in terms of reflecting the underlying angiogenesis information in NPC. Compared to conventional MR-based radiomics models, the combined radiomics model integrating MR and DCE-MR showed promising results in delivering more accurate prognostic predictions and provided more clinical benefits in quantifying and monitoring phenotypic changes associated with NPC prognosis.
Collapse
Affiliation(s)
- Hailin Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Siwen Wang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Gang Wu
- Department of Radiotherapy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China
| | - Mengjie Fang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuebin Xie
- Department of Radiology, Kiang Wu Hospital, Santo António, Macao, 999078, China
| | - Jie Zhang
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, Guangdong, 519000, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai, Guangdong, 519000, China.
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, 570311, China.
| |
Collapse
|
12
|
Small C, Prior P, Nasief H, Zeitlin R, Saeed H, Paulson E, Morrow N, Rownd J, Erickson B, Bedi M. A general framework to develop a radiomic fingerprint for progression-free survival in cervical cancer. Brachytherapy 2023; 22:728-735. [PMID: 37574352 DOI: 10.1016/j.brachy.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE Treatment of locally advanced cervical cancer patients includes chemoradiation followed by brachytherapy. Our aim is to develop a delta radiomics (DRF) model from MRI-based brachytherapy treatment and assess its association with progression free survival (PFS). MATERIALS AND METHODS A retrospective analysis of FIGO stage IB- IV cervical cancer patients between 2012 and 2018 who were treated with definitive chemoradiation followed by MRI-based intracavitary brachytherapy was performed. Clinical factors together with 18 radiomic features extracted from different radiomics matrices were analyzed. The delta radiomic features (DRFs) were extracted from MRI on the first and last brachytherapy fractions. Support Vector Machine (SVM) models were fitted to combinations of 2-3 DRFs found significant after Spearman correlation and Wilcoxon rank sum test statistics. Additional models were tested that included clinical factors together with DRFs. RESULTS A total of 39 patients were included in the analysis with a median patient age of 52 years. Progression occurred in 20% of patients (8/39). The significant DRFs using two DRF feature combinations was a model using auto correlation (AC) and sum variance (SV). The best performing three feature model combined mean, AC & SV. Additionally, the inclusion of FIGO stages with the 2- and 3 DRF combination model(s) improved performance compared to models with only DRFs. However, all the clinical factor + DRF models were not significantly different from one another (all AUCs were 0.77). CONCLUSIONS Our study shows promising evidence that radiomics metrics are associated with progression free survival in cervical cancer.
Collapse
Affiliation(s)
- Christina Small
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI.
| | - Phillip Prior
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Haidy Nasief
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Ross Zeitlin
- Department of Radiation Oncology, John H Stroger, Jr. Hospital of Cook County, Chicago, IL
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Baptist Health South Florida, Boynton Beach, FL
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Natalya Morrow
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Jason Rownd
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Meena Bedi
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
13
|
Zhong NN, Wang HQ, Huang XY, Li ZZ, Cao LM, Huo FY, Liu B, Bu LL. Enhancing head and neck tumor management with artificial intelligence: Integration and perspectives. Semin Cancer Biol 2023; 95:52-74. [PMID: 37473825 DOI: 10.1016/j.semcancer.2023.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Head and neck tumors (HNTs) constitute a multifaceted ensemble of pathologies that primarily involve regions such as the oral cavity, pharynx, and nasal cavity. The intricate anatomical structure of these regions poses considerable challenges to efficacious treatment strategies. Despite the availability of myriad treatment modalities, the overall therapeutic efficacy for HNTs continues to remain subdued. In recent years, the deployment of artificial intelligence (AI) in healthcare practices has garnered noteworthy attention. AI modalities, inclusive of machine learning (ML), neural networks (NNs), and deep learning (DL), when amalgamated into the holistic management of HNTs, promise to augment the precision, safety, and efficacy of treatment regimens. The integration of AI within HNT management is intricately intertwined with domains such as medical imaging, bioinformatics, and medical robotics. This article intends to scrutinize the cutting-edge advancements and prospective applications of AI in the realm of HNTs, elucidating AI's indispensable role in prevention, diagnosis, treatment, prognostication, research, and inter-sectoral integration. The overarching objective is to stimulate scholarly discourse and invigorate insights among medical practitioners and researchers to propel further exploration, thereby facilitating superior therapeutic alternatives for patients.
Collapse
Affiliation(s)
- Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Han-Qi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Xin-Yue Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
14
|
Yolchuyeva S, Giacomazzi E, Tonneau M, Lamaze F, Orain M, Coulombe F, Malo J, Belkaid W, Routy B, Joubert P, Manem VSK. Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study. Sci Rep 2023; 13:11065. [PMID: 37422576 PMCID: PMC10329671 DOI: 10.1038/s41598-023-38076-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
With the increasing use of immune checkpoint inhibitors (ICIs), there is an urgent need to identify biomarkers to stratify responders and non-responders using programmed death-ligand (PD-L1) expression, and to predict patient-specific outcomes such as progression free survival (PFS). The current study is aimed to determine the feasibility of building imaging-based predictive biomarkers for PD-L1 and PFS through systematically evaluating a combination of several machine learning algorithms with different feature selection methods. A retrospective, multicenter study of 385 advanced NSCLC patients amenable to ICIs was undertaken in two academic centers. Radiomic features extracted from pretreatment CT scans were used to build predictive models for PD-L1 and PFS (short-term vs. long-term survivors). We first employed the LASSO methodology followed by five feature selection methods and seven machine learning approaches to build the predictors. From our analyses, we found several combinations of feature selection methods and machine learning algorithms to achieve a similar performance. Logistic regression with ReliefF feature selection (AUC = 0.64, 0.59 in discovery and validation cohorts) and SVM with Anova F-test feature selection (AUC = 0.64, 0.63 in discovery and validation datasets) were the best-performing models to predict PD-L1 and PFS. This study elucidates the application of suitable feature selection approaches and machine learning algorithms to predict clinical endpoints using radiomics features. Through this study, we identified a subset of algorithms that should be considered in future investigations for building robust and clinically relevant predictive models.
Collapse
Affiliation(s)
- Sevinj Yolchuyeva
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Elena Giacomazzi
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
- Université de médecine de Lille, Lille, France
| | - Fabien Lamaze
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Michele Orain
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - François Coulombe
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Julie Malo
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Wiam Belkaid
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Venkata S K Manem
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
| |
Collapse
|
15
|
Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers (Basel) 2023; 15:cancers15041174. [PMID: 36831517 PMCID: PMC9954362 DOI: 10.3390/cancers15041174] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Recent advances in machine learning and artificial intelligence technology have ensured automated evaluation of medical images. As a result, quantifiable diagnostic and prognostic biomarkers have been created. We discuss radiomics applications for the head and neck region in this paper. Molecular characterization, categorization, prognosis and therapy recommendation are given special consideration. In a narrative manner, we outline the fundamental technological principles, the overall idea and usual workflow of radiomic analysis and what seem to be the present and potential challenges in normal clinical practice. Clinical oncology intends for all of this to ensure informed decision support for personalized and useful cancer treatment. Head and neck cancers present a unique set of diagnostic and therapeutic challenges. These challenges are brought on by the complicated anatomy and heterogeneity of the area under investigation. Radiomics has the potential to address these barriers. Future research must be interdisciplinary and focus on the study of certain oncologic functions and outcomes, with external validation and multi-institutional cooperation in order to achieve this.
Collapse
|
16
|
Li S, Wan X, Deng YQ, Hua HL, Li SL, Chen XX, Zeng ML, Zha Y, Tao ZZ. Predicting prognosis of nasopharyngeal carcinoma based on deep learning: peritumoral region should be valued. Cancer Imaging 2023; 23:14. [PMID: 36759889 PMCID: PMC9912633 DOI: 10.1186/s40644-023-00530-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The purpose of this study was to explore whether incorporating the peritumoral region to train deep neural networks could improve the performance of the models for predicting the prognosis of NPC. METHODS A total of 381 NPC patients who were divided into high- and low-risk groups according to progression-free survival were retrospectively included. Deeplab v3 and U-Net were trained to build segmentation models for the automatic segmentation of the tumor and suspicious lymph nodes. Five datasets were constructed by expanding 5, 10, 20, 40, and 60 pixels outward from the edge of the automatically segmented region. Inception-Resnet-V2, ECA-ResNet50t, EfficientNet-B3, and EfficientNet-B0 were trained with the original, segmented, and the five new constructed datasets to establish the classification models. The receiver operating characteristic curve was used to evaluate the performance of each model. RESULTS The Dice coefficients of Deeplab v3 and U-Net were 0.741(95%CI:0.722-0.760) and 0.737(95%CI:0.720-0.754), respectively. The average areas under the curve (aAUCs) of deep learning models for classification trained with the original and segmented images and with images expanded by 5, 10, 20, 40, and 60 pixels were 0.717 ± 0.043, 0.739 ± 0.016, 0.760 ± 0.010, 0.768 ± 0.018, 0.802 ± 0.013, 0.782 ± 0.039, and 0.753 ± 0.014, respectively. The models trained with the images expanded by 20 pixels obtained the best performance. CONCLUSIONS The peritumoral region NPC contains information related to prognosis, and the incorporation of this region could improve the performance of deep learning models for prognosis prediction.
Collapse
Affiliation(s)
- Song Li
- grid.89957.3a0000 0000 9255 8984Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029 China ,grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xia Wan
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yu-Qin Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Hong-Li Hua
- grid.412632.00000 0004 1758 2270Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Sheng-Lan Li
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Xi-Xiang Chen
- grid.412632.00000 0004 1758 2270Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei 430060 P.R. China
| | - Man-Li Zeng
- grid.510937.9Department of Otolaryngology-Head & Neck Surgery, Ezhou Central Hospital, No. 9 Wenxing Road, Ezhou, 436000 P.R. China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan, Hubei, 430060, P.R. China.
| |
Collapse
|
17
|
Longitudinal and Multimodal Radiomics Models for Head and Neck Cancer Outcome Prediction. Cancers (Basel) 2023; 15:cancers15030673. [PMID: 36765628 PMCID: PMC9913206 DOI: 10.3390/cancers15030673] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Radiomics analysis provides a promising avenue towards the enabling of personalized radiotherapy. Most frequently, prognostic radiomics models are based on features extracted from medical images that are acquired before treatment. Here, we investigate whether combining data from multiple timepoints during treatment and from multiple imaging modalities can improve the predictive ability of radiomics models. We extracted radiomics features from computed tomography (CT) images acquired before treatment as well as two and three weeks after the start of radiochemotherapy for 55 patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Additionally, we obtained features from FDG-PET images taken before treatment and three weeks after the start of therapy. Cox proportional hazards models were then built based on features of the different image modalities, treatment timepoints, and combinations thereof using two different feature selection methods in a five-fold cross-validation approach. Based on the cross-validation results, feature signatures were derived and their performance was independently validated. Discrimination regarding loco-regional control was assessed by the concordance index (C-index) and log-rank tests were performed to assess risk stratification. The best prognostic performance was obtained for timepoints during treatment for all modalities. Overall, CT was the best discriminating modality with an independent validation C-index of 0.78 for week two and weeks two and three combined. However, none of these models achieved statistically significant patient stratification. Models based on FDG-PET features from week three provided both satisfactory discrimination (C-index = 0.61 and 0.64) and statistically significant stratification (p=0.044 and p<0.001), but produced highly imbalanced risk groups. After independent validation on larger datasets, the value of (multimodal) radiomics models combining several imaging timepoints should be prospectively assessed for personalized treatment strategies.
Collapse
|
18
|
Ching JCF, Lam S, Lam CCH, Lui AOY, Kwong JCK, Lo AYH, Chan JWH, Cai J, Leung WS, Lee SWY. Integrating CT-based radiomic model with clinical features improves long-term prognostication in high-risk prostate cancer. Front Oncol 2023; 13:1060687. [PMID: 37205204 PMCID: PMC10186349 DOI: 10.3389/fonc.2023.1060687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Objective High-risk prostate cancer (PCa) is often treated by prostate-only radiotherapy (PORT) owing to its favourable toxicity profile compared to whole-pelvic radiotherapy. Unfortunately, more than 50% patients still developed disease progression following PORT. Conventional clinical factors may be unable to identify at-risk subgroups in the era of precision medicine. In this study, we aimed to investigate the prognostic value of pre-treatment planning computed tomography (pCT)-based radiomic features and clinical attributes to predict 5-year progression-free survival (PFS) in high-risk PCa patients following PORT. Materials and methods A total of 176 biopsy-confirmed PCa patients who were treated at the Hong Kong Princess Margaret Hospital were retrospectively screened for eligibility. Clinical data and pCT of one hundred eligible high-risk PCa patients were analysed. Radiomic features were extracted from the gross-tumour-volume (GTV) with and without applying Laplacian-of-Gaussian (LoG) filter. The entire patient cohort was temporally stratified into a training and an independent validation cohort in a ratio of 3:1. Radiomics (R), clinical (C) and radiomic-clinical (RC) combined models were developed by Ridge regression through 5-fold cross-validation with 100 iterations on the training cohort. A model score was calculated for each model based on the included features. Model classification performance on 5-year PFS was evaluated in the independent validation cohort by average area-under-curve (AUC) of receiver-operating-characteristics (ROC) curve and precision-recall curve (PRC). Delong's test was used for model comparison. Results The RC combined model which contains 6 predictive features (tumour flatness, root-mean-square on fine LoG-filtered image, prostate-specific antigen serum concentration, Gleason score, Roach score and GTV volume) was the best-performing model (AUC = 0.797, 95%CI = 0.768-0.826), which significantly outperformed the R-model (AUC = 0.795, 95%CI = 0.774-0.816) and C-model (AUC = 0.625, 95%CI = 0.585-0.665) in the independent validation cohort. Besides, only the RC model score significantly classified patients in both cohorts into progression and progression-free groups regarding their 5-year PFS (p< 0.05). Conclusion Combining pCT-based radiomic and clinical attributes provided superior prognostication value regarding 5-year PFS in high-risk PCa patients following PORT. A large multi-centre study will potentially aid clinicians in implementing personalised treatment for this vulnerable subgroup in the future.
Collapse
Affiliation(s)
- Jerry C. F. Ching
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Saikit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Research Institute for Smart Aging, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Cody C. H. Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Angie O. Y. Lui
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Joanne C. K. Kwong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Anson Y. H. Lo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jason W. H. Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - W. S. Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Shara W. Y. Lee, ; W. S. Leung,
| | - Shara W. Y. Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- *Correspondence: Shara W. Y. Lee, ; W. S. Leung,
| |
Collapse
|
19
|
Zhang Q, Wu G, Yang Q, Dai G, Li T, Chen P, Li J, Huang W. Survival rate prediction of nasopharyngeal carcinoma patients based on MRI and gene expression using a deep neural network. Cancer Sci 2022; 114:1596-1605. [PMID: 36541519 PMCID: PMC10067413 DOI: 10.1111/cas.15704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
To achieve a better treatment regimen and follow-up assessment design for intensity-modulated radiotherapy (IMRT)-treated nasopharyngeal carcinoma (NPC) patients, an accurate progression-free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC patients after IMRT treatment using a deep learning method and comparing that with the traditional texture analysis method. One hundred and fifty-one NPC patients were included in this retrospective study. T1-weighted, proton density and dynamic contrast-enhanced magnetic resonance (MR) images were acquired. The expression level of five genes (HIF-1α, EGFR, PTEN, Ki-67, and VEGF) and infection of Epstein-Barr (EB) virus were tested. A residual network was trained to predict PFS from MR images. The output as well as patient characteristics were combined using a linear regression model to provide a final PFS prediction. The prediction accuracy was compared with that of the traditional texture analysis method. A regression model combining the deep learning output with HIF-1α expression and Epstein-Barr infection provides the best PFS prediction accuracy (Spearman correlation R2 = 0.53; Harrell's C-index = 0.82; receiver operative curve [ROC] analysis area under the curve [AUC] = 0.88; log-rank test hazard ratio [HR] = 8.45), higher than a regression model combining texture analysis with HIF-1α expression (Spearman correlation R2 = 0.14; Harrell's C-index =0.68; ROC analysis AUC = 0.76; log-rank test HR = 2.85). The deep learning method does not require a manually drawn tumor region of interest. MR image processing using deep learning combined with patient characteristics can provide accurate PFS prediction for nasopharyngeal carcinoma patients and does not rely on specific kernels or tumor regions of interest, which is needed for the texture analysis method.
Collapse
Affiliation(s)
- Qihao Zhang
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Gang Wu
- Department of Radiotherapy, Hainan General Hospital, Hainan, China
| | - Qianyu Yang
- Department of Radiology, Hainan General Hospital, Hainan, China
| | - Ganmian Dai
- Department of Radiology, Hainan General Hospital, Hainan, China
| | - Tiansheng Li
- Department of Radiology, Hainan General Hospital, Hainan, China
| | - Pianpian Chen
- Department of Pathology, Hainan General Hospital, Hainan, China
| | - Jiao Li
- Department of Pathology, Hainan General Hospital, Hainan, China
| | - Weiyuan Huang
- Department of Radiology, Hainan General Hospital, Hainan, China
| |
Collapse
|
20
|
Kulanthaivelu R, Kohan A, Hinzpeter R, Liu ZA, Hope A, Huang SH, Waldron J, O’Sullivan B, Ortega C, Metser U, Veit-Haibach P. Prognostic value of PET/CT and MR-based baseline radiomics among patients with non-metastatic nasopharyngeal carcinoma. Front Oncol 2022; 12:952763. [PMID: 36353565 PMCID: PMC9638017 DOI: 10.3389/fonc.2022.952763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2023] Open
Abstract
PURPOSE Radiomics is an emerging imaging assessment technique that has shown promise in predicting survival among nasopharyngeal carcinoma (NPC) patients. Studies so far have focused on PET or MR-based radiomics independently. The aim of our study was to evaluate the prognostic value of clinical and radiomic parameters derived from both PET/CT and MR. METHODS Retrospective evaluation of 124 NPC patients with PET/CT and radiotherapy planning MR (RP-MR). Primary tumors were segmented using dedicated software (LIFEx version 6.1) from PET, CT, contrast-enhanced T1-weighted (T1-w), and T2-weighted (T2-w) MR sequences with 376 radiomic features extracted. Summary statistics describe patient, disease, and treatment characteristics. The Kaplan-Meier (KM) method estimates overall survival (OS) and progression-free survival (PFS). Clinical factors selected based on univariable analysis and the multivariable Cox model were subsequently constructed with radiomic features added. RESULTS The final models comparing clinical, clinical + RP-MR, clinical + PET/CT and clinical + RP-MR + PET/CT for OS and PFS demonstrated that combined radiomic signatures were significantly associated with improved survival prognostication (AUC 0.62 vs 0.81 vs 0.75 vs 0.86 at 21 months for PFS and 0.56 vs 0.85 vs 0.79 vs 0.96 at 24 months for OS). Clinical + RP-MR features initially outperform clinical + PET/CT for both OS and PFS (<18 months), and later in the clinical course for PFS (>42 months). CONCLUSION Our study demonstrated that PET/CT-based radiomic features may improve survival prognostication among NPC patients when combined with baseline clinical and MR-based radiomic features.
Collapse
Affiliation(s)
- Roshini Kulanthaivelu
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Andres Kohan
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ricarda Hinzpeter
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Andrew Hope
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - John Waldron
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Brian O’Sullivan
- Department of Radiation Oncology, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women’s College Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Jiang S, Han L, Liang L, Long L. Development and validation of an MRI-based radiomic model for predicting overall survival in nasopharyngeal carcinoma patients with local residual tumors after intensity-modulated radiotherapy. BMC Med Imaging 2022; 22:174. [PMID: 36195860 PMCID: PMC9533536 DOI: 10.1186/s12880-022-00902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the potential value of the pretreatment MRI-based radiomic model in predicting the overall survival (OS) of nasopharyngeal carcinoma (NPC) patients with local residual tumors after intensity-modulated radiotherapy (IMRT). METHODS A total of 218 consecutive nonmetastatic NPC patients with local residual tumors after IMRT [training cohort (n = 173) and validation cohort (n = 45)] were retrospectively included in this study. Clinical and MRI data were obtained. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) were used to select the radiomic features from pretreatment MRI. The clinical, radiomic, and combined models for predicting OS were constructed. The models' performances were evaluated using Harrell's concordance index (C-index), calibration curve, and decision curve analysis. RESULTS The C-index of the radiomic model was higher than that of the clinical model, with the C-index of 0.788 (95% CI 0.724-0.852) versus 0.672 (95% CI 0.599-0.745) in the training cohort and 0.753 (95% CI 0.604-0.902) versus 0.634 (95% CI 0.593-0.675) in the validation cohort. Calibration curves showed good agreement between the radiomic model-predicted probability of 2- and 3-year OS and the actual observed probability in the training and validation groups. Decision curve analysis showed that the radiomic model had higher clinical usefulness than the clinical model. The discrimination of the combined model improved significantly in the training cohort (P < 0.01) but not in the validation cohort, with the C-index of 0.834 and 0.734, respectively. The radiomic model divided patients into high- and low-risk groups with a significant difference in OS in both the training and validation cohorts. CONCLUSIONS Pretreatment MRI-based radiomic model may improve OS prediction in NPC patients with local residual tumors after IMRT and may assist in clinical decision-making.
Collapse
Affiliation(s)
- Shengping Jiang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Lin Han
- Department of Rehabilitation Medicine, The First People's Hospital of Yulin, No. 495 Jiaoyu Road, Yulin, 537000, China
| | - Leifeng Liang
- Department of Radiation Oncology, The First People's Hospital of Yulin, No. 495 Jiaoyu Road, Yulin, 537000, China
| | - Liling Long
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
23
|
Wei G, Jiang P, Tang Z, Qu A, Deng X, Guo F, Sun H, Zhang Y, Gu L, Zhang S, Mu W, Wang J, Tian J. MRI radiomics in overall survival prediction of local advanced cervical cancer patients tread by adjuvant chemotherapy following concurrent chemoradiotherapy or concurrent chemoradiotherapy alone. Magn Reson Imaging 2022; 91:81-90. [DOI: 10.1016/j.mri.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023]
|
24
|
Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. Prediction of Response to Induction Chemotherapy Plus Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma Based on MRI Radiomics and Delta Radiomics: A Two-Center Retrospective Study. Front Oncol 2022; 12:824509. [PMID: 35530350 PMCID: PMC9074388 DOI: 10.3389/fonc.2022.824509] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Objective We aimed to establish an MRI radiomics model and a Delta radiomics model to predict tumor retraction after induction chemotherapy (IC) combined with concurrent chemoradiotherapy (CCRT) for primary nasopharyngeal carcinoma (NPC) in non-endemic areas and to validate its efficacy. Methods A total of 272 patients (155 in the training set, 66 in the internal validation set, and 51 in the external validation set) with biopsy pathologically confirmed primary NPC who were screened for pretreatment MRI were retrospectively collected. The NPC tumor was delineated as a region of interest in the two sequenced images of MRI before treatment and after IC, followed by radiomics feature extraction. With the use of maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) algorithms, logistic regression was performed to establish pretreatment MRI radiomics and pre- and post-IC Delta radiomics models. The optimal Youden’s index was taken; the receiver operating characteristic (ROC) curve, calibration curve, and decision curve were drawn to evaluate the predictive efficacy of different models. Results Seven optimal feature subsets were selected from the pretreatment MRI radiomics model, and twelve optimal subsets were selected from the Delta radiomics model. The area under the ROC curve, accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of the MRI radiomics model were 0.865, 0.827, 0.837, 0.813, 0.776, and 0.865, respectively; the corresponding indicators of the Delta radiomics model were 0.941, 0.883, 0.793, 0.968, 0.833, and 0.958, respectively. Conclusion The pretreatment MRI radiomics model and pre- and post-IC Delta radiomics models could predict the IC-CCRT response of NPC in non-epidemic areas.
Collapse
Affiliation(s)
- Yuzhen Xi
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Department of Radiology, 903rd Hospital of PLA, Hangzhou, China
| | - Xiuhong Ge
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiming Ji
- Department of Radiology, Liangzhu Hospital, Hangzhou, China
| | - Luoyu Wang
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Haonan Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengze Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital Affiliated to Medical College Zhejiang University, Hangzhou, China
| | - Feng Jiang
- Department of Head and Neck Radiotherapy, Zhejiang Cancer Hospital/Zhejiang Province Key Laboratory of Radiation Oncology, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| | - Zhongxiang Ding
- Department of Radiology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feng Jiang, ; Zhongxiang Ding,
| |
Collapse
|
25
|
Shen H, Yin J, Niu R, Lian Y, Huang Y, Tu C, Liu D, Wang X, Lan X, Yuan X, Zhang J. Development and validation of a radiomic nomogram to compare the survival benefit of induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy plus adjuvant chemotherapy in locoregionally advanced nasopharyngeal carcinoma: A multicenter study. Radiother Oncol 2022; 171:107-113. [DOI: 10.1016/j.radonc.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
|
26
|
Pham N, Ju C, Kong T, Mukherji SK. Artificial Intelligence in Head and Neck Imaging. Semin Ultrasound CT MR 2022; 43:170-175. [PMID: 35339257 DOI: 10.1053/j.sult.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Artificial intelligence (AI) can be applied to head and neck imaging to augment image quality and various clinical tasks including segmentation of tumor volumes, tumor characterization, tumor prognostication and treatment response, and prediction of metastatic lymph node disease. Head and neck oncology care is well positioned for the application of AI since treatment is guided by a wealth of information derived from CT, MRI, and PET imaging data. AI-based methods can integrate complex imaging, histologic, molecular, and clinical data to model tumor biology and behavior, and potentially identify associations, far beyond what conventional qualitative imaging can provide alone.
Collapse
Affiliation(s)
- Nancy Pham
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA; Neuroradiology, Radiology Department, University of Illinois.
| | - Connie Ju
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| | - Tracie Kong
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| | - Suresh K Mukherji
- Neuroradiology, Radiology Department, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
27
|
Fang ZY, Li KZ, Yang M, Che YR, Luo LP, Wu ZF, Gao MQ, Wu C, Luo C, Lai X, Zhang YY, Wang M, Xu Z, Li SM, Liu JK, Zhou P, Wang WD. Integration of MRI-Based Radiomics Features, Clinicopathological Characteristics, and Blood Parameters: A Nomogram Model for Predicting Clinical Outcome in Nasopharyngeal Carcinoma. Front Oncol 2022; 12:815952. [PMID: 35311119 PMCID: PMC8924617 DOI: 10.3389/fonc.2022.815952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to develop a nomogram model based on multiparametric magnetic resonance imaging (MRI) radiomics features, clinicopathological characteristics, and blood parameters to predict the progression-free survival (PFS) of patients with nasopharyngeal carcinoma (NPC). Methods A total of 462 patients with pathologically confirmed nonkeratinizing NPC treated at Sichuan Cancer Hospital were recruited from 2015 to 2019 and divided into training and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection operator (LASSO) algorithm was used for radiomics feature dimension reduction and screening in the training cohort. Rad-score, age, sex, smoking and drinking habits, Ki-67, monocytes, monocyte ratio, and mean corpuscular volume were incorporated into a multivariate Cox proportional risk regression model to build a multifactorial nomogram. The concordance index (C-index) and decision curve analysis (DCA) were applied to estimate its efficacy. Results Nine significant features associated with PFS were selected by LASSO and used to calculate the rad-score of each patient. The rad-score was verified as an independent prognostic factor for PFS in NPC. The survival analysis showed that those with lower rad-scores had longer PFS in both cohorts (p < 0.05). Compared with the tumor–node–metastasis staging system, the multifactorial nomogram had higher C-indexes (training cohorts: 0.819 vs. 0.610; validation cohorts: 0.820 vs. 0.602). Moreover, the DCA curve showed that this model could better predict progression within 50% threshold probability. Conclusion A nomogram that combined MRI-based radiomics with clinicopathological characteristics and blood parameters improved the ability to predict progression in patients with NPC.
Collapse
Affiliation(s)
- Zeng-Yi Fang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
| | - Ke-Zhen Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu-Rou Che
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li-Ping Luo
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zi-Fei Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ming-Quan Gao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Xin Lai
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Yi-Yao Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhu Xu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Si-Ming Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie-Ke Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Dong Wang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Chengdu, China.,Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China.,Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
28
|
Duan W, Xiong B, Tian T, Zou X, He Z, Zhang L. Radiomics in Nasopharyngeal Carcinoma. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221079186. [PMID: 35237090 PMCID: PMC8883403 DOI: 10.1177/11795549221079186] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies, and the primary treatment methods are radiotherapy and chemotherapy. Radiotherapy alone, concurrent chemoradiotherapy, and induction chemotherapy combined with concurrent chemoradiotherapy can be used according to different grades. Treatment options and prognoses vary greatly depending on the grade of disease in the patients. Accurate grading and risk assessment are required. Recently, radiomics has combined a large amount of invisible high-dimensional information extracted from computed tomography, magnetic resonance imaging, or positron emission tomography with powerful computing capabilities of machine-learning algorithms, providing the possibility to achieve an accurate diagnosis and individualized treatment for cancer patients. As an effective tumor biomarker of NPC, the radiomic signature has been widely used in grading, differential diagnosis, prediction of prognosis, evaluation of treatment response, and early identification of therapeutic complications. The process of radiomic research includes image segmentation, feature extraction, feature selection, model establishment, and evaluation. Many open-source or commercial tools can be used to achieve these procedures. The development of machine-learning algorithms provides more possibilities for radiomics research. This review aimed to summarize the application of radiomics in NPC and introduce the basic process of radiomics research.
Collapse
Affiliation(s)
- Wenyue Duan
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Bingdi Xiong
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Ting Tian
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xinyun Zou
- College of Medicine, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Zhennan He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, People's Republic of China
| | - Ling Zhang
- Department of Oncology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, People's Republic of China
| |
Collapse
|
29
|
Intarak S, Chongpison Y, Vimolnoch M, Oonsiri S, Kitpanit S, Prayongrat A, Kannarunimit D, Chakkabat C, Sriswasdi S, Lertbutsayanukul C, Rakvongthai Y. Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients. Front Oncol 2022; 12:775248. [PMID: 35155228 PMCID: PMC8831248 DOI: 10.3389/fonc.2022.775248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
PurposeWe aimed to construct predictive models for the overall survival (OS), progression-free survival (PFS), and distant metastasis-free survival (DMFS) for nasopharyngeal carcinoma (NPC) patients by using CT-based radiomics.Materials and MethodsWe collected data from 197 NPC patients. For each patient, radiomic features were extracted from the CT image acquired at pretreatment via PyRadiomics. Feature selection was performed in two steps. First, features with high inter-observer variability based on multiple tumor delineations were excluded. Then, stratified bootstrappings were performed to identify feature combinations that most frequently achieved the highest (i) area under the receiver operating characteristic curve (AUC) for predicting 3-year OS, PFS, and DMFS or (ii) Harrell’s C-index for predicting time to event. Finally, regularized logistic regression and Cox proportional hazard models with the most frequently selected feature combinations as input were tuned using cross-validation. Additionally, we examined the robustness of the constructed model to variation in tumor delineation by simulating 100 realizations of radiomic feature values to mimic features extracted from different tumor boundaries.ResultsThe combined model that used both radiomics and clinical features yielded significantly higher AUC and Harrell’s C-index than models using either feature set alone for all outcomes (p < 0.05). The AUCs and Harrell’s C-indices of the clinical-only and radiomics-only models ranged from 0.758 ± 0.091 to 0.789 ± 0.082 and from 0.747 ± 0.062 to 0.767 ± 0.074, respectively. In comparison, the combined models achieved AUC of 0.801 ± 0.075 to 0.813 ± 0.078 and Harrell’s C-indices of 0.779 ± 0.066 to 0.796 ± 0.069. The results showed that our models were robust to variation in tumor delineation with the coefficient of variation ranging from 4.8% to 6.4% and from 6.7% to 9.3% for AUC and Harrell’s C-index, respectively.ConclusionOur results demonstrated that using CT-based radiomic features together with clinical features provided superior NPC prognostic prediction than using either clinical or radiomic features alone.
Collapse
Affiliation(s)
- Sararas Intarak
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuda Chongpison
- Biostatistics Excellence Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Mananchaya Vimolnoch
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sornjarod Oonsiri
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sarin Kitpanit
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Anussara Prayongrat
- Division of Radiation Oncology, Department of Radiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Danita Kannarunimit
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chakkapong Chakkabat
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center for Artificial Intelligence in Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chawalit Lertbutsayanukul
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yothin Rakvongthai
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Yothin Rakvongthai,
| |
Collapse
|
30
|
Magnetic Resonance Imaging-Based Radiomics for the Prediction of Progression-Free Survival in Patients with Nasopharyngeal Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030653. [PMID: 35158921 PMCID: PMC8833585 DOI: 10.3390/cancers14030653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary More than 70% of patients with nasopharyngeal carcinoma (NPC) present with a locoregionally advanced state. Although the initial staging of NPC is primarily based on TNM staging, there is currently no well-established prognostic marker for NPC. Recently, radiomics has received considerable research attention as a potential prognostic biomarker for NPC. The aim of this systematic review and meta-analysis was to comprehensively evaluate the prognostic value of pretreatment magnetic resonance imaging (MRI)-based radiomics for NPC. The analyzed radiomic models demonstrated modest prognostic values, with a pooled mean estimated Harrell’s concordance index (C index) of 0.762. The prognostic models developed using more than eight radiomic features had significantly higher C-indices than those developed using fewer features. Our findings provide evidence that MRI-based radiomics may have a modest prognostic role in the treatment of NPC. However, more consistent study protocols are needed to verify the generalizability of radiomics. Abstract Advanced non-metastatic nasopharyngeal carcinoma (NPC) has variable treatment outcomes. However, there are no prognostic biomarkers for identifying high-risk patients with NPC. The aim of this systematic review and meta-analysis was to comprehensively assess the prognostic value of magnetic resonance imaging (MRI)-based radiomics for untreated NPC. The PubMed-Medline and EMBASE databases were searched for relevant articles published up to 12 August 2021. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist was used to determine the qualities of the selected studies. Random-effects modeling was used to calculate the pooled estimates of Harrell’s concordance index (C-index) for progression-free survival (PFS). Between-study heterogeneity was evaluated using Higgins’ inconsistency index (I2). Among the studies reported in the 57 articles screened, 10 with 3458 patients were eligible for qualitative and quantitative data syntheses. The mean adherence rate to the TRIPOD checklist was 68.6 ± 7.1%. The pooled estimate of the C-index was 0.762 (95% confidence interval, 0.687–0.837). Substantial between-study heterogeneity was observed (I2 = 89.2%). Overall, MRI-based radiomics shows good prognostic performance in predicting the PFS of patients with untreated NPC. However, more consistent and robust study protocols are necessary to validate the prognostic role of radiomics for NPC.
Collapse
|
31
|
Zhang YM, Gong GZ, Qiu QT, Han YW, Lu HM, Yin Y. Radiomics for Diagnosis and Radiotherapy of Nasopharyngeal Carcinoma. Front Oncol 2022; 11:767134. [PMID: 35070971 PMCID: PMC8766636 DOI: 10.3389/fonc.2021.767134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the head and neck. The primary clinical manifestations are nasal congestion, blood-stained nasal discharge, headache, and hearing loss. It occurs frequently in Southeast Asia, North Africa, and especially in southern China. Radiotherapy is the main treatment, and currently, imaging examinations used for the diagnosis, treatment, and prognosis of NPC include computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET)-CT, and PET-MRI. These methods play an important role in target delineation, radiotherapy planning design, dose evaluation, and outcome prediction. However, the anatomical and metabolic information obtained at the macro level of images may not meet the increasing accuracy required for radiotherapy. As a technology used for mining deep image information, radiomics can provide further information for the diagnosis and treatment of NPC and promote individualized precision radiotherapy in the future. This paper reviews the application of radiomics in the diagnosis and treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Yu-Mei Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guan-Zhong Gong
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qing-Tao Qiu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - He-Ming Lu
- Department of Radiotherapy, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yong Yin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
32
|
George MM, Tolley NS. AIM in Otolaryngology and Head and Neck Surgery. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
33
|
Kang L, Niu Y, Huang R, Lin SY, Tang Q, Chen A, Fan Y, Lang J, Yin G, Zhang P. Predictive Value of a Combined Model Based on Pre-Treatment and Mid-Treatment MRI-Radiomics for Disease Progression or Death in Locally Advanced Nasopharyngeal Carcinoma. Front Oncol 2021; 11:774455. [PMID: 34950584 PMCID: PMC8688844 DOI: 10.3389/fonc.2021.774455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose A combined model was established based on the MRI-radiomics of pre- and mid-treatment to assess the risk of disease progression or death in locally advanced nasopharyngeal carcinoma. Materials and Methods A total of 243 patients were analyzed. We extracted 10,400 radiomics features from the primary nasopharyngeal tumors and largest metastatic lymph nodes on the axial contrast-enhanced T1 weighted and T2 weighted in pre- and mid-treatment MRI, respectively. We used the SMOTE algorithm, center and scale and box-cox, Pearson correlation coefficient, and LASSO regression to construct the pre- and mid-treatment MRI-radiomics prediction model, respectively, and the risk scores named P score and M score were calculated. Finally, univariate and multivariate analyses were used for P score, M score, and clinical data to build the combined model and grouped the patients into two risk levels, namely, high and low. Result A combined model of pre- and mid-treatment MRI-radiomics successfully categorized patients into high- and low-risk groups. The log-rank test showed that the high- and low-risk groups had good prognostic performance in PFS (P<0.0001, HR: 19.71, 95% CI: 12.77–30.41), which was better than TNM stage (P=0.004, HR:1.913, 95% CI:1.250–2.926), and also had an excellent predictive effect in LRFS, DMFS, and OS. Conclusion Risk grouping of LA-NPC using a combined model of pre- and mid-treatment MRI-radiomics can better predict disease progression or death.
Collapse
Affiliation(s)
- Le Kang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Department of Hematology and Oncology, Anyue County People's Hospital, Ziyang, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Yulin Niu
- Department of Transplantation Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Stefan Yujie Lin
- University of Southern California, Viterbi School of Engineering Applied Data Science, Los Angeles, CA, United States
| | - Qianlong Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Ailin Chen
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Yixin Fan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China.,Graduate School, Chengdu Medical College, Chengdu, China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Gang Yin
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
34
|
Bao D, Zhao Y, Liu Z, Zhong H, Geng Y, Lin M, Li L, Zhao X, Luo D. Prognostic and predictive value of radiomics features at MRI in nasopharyngeal carcinoma. Discov Oncol 2021; 12:63. [PMID: 34993528 PMCID: PMC8683387 DOI: 10.1007/s12672-021-00460-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To explore the value of MRI-based radiomics features in predicting risk in disease progression for nasopharyngeal carcinoma (NPC). METHODS 199 patients confirmed with NPC were retrospectively included and then divided into training and validation set using a hold-out validation (159: 40). Discriminative radiomic features were selected with a Wilcoxon signed-rank test from tumors and normal masticatory muscles of 37 NPC patients. LASSO Cox regression and Pearson correlation analysis were applied to further confirm the differential expression of the radiomic features in the training set. Using the multiple Cox regression model, we built a radiomic feature-based classifier, Rad-Score. The prognostic and predictive performance of Rad-Score was validated in the validation cohort and illustrated in all included 199 patients. RESULTS We identified 1832 differentially expressed radiomic features between tumors and normal tissue. Rad-Score was built based on one radiomic feature: CET1-w_wavelet.LLH_GLDM_Dependence-Entropy. Rad-Score showed a satisfactory performance to predict disease progression in NPC with an area under the curve (AUC) of 0.604, 0.732, 0.626 in the training, validation, and the combined cohort (all 199 patients included) respectively. Rad-Score improved risk stratification, and disease progression-free survival was significantly different between these groups in every cohort of patients (p = 0.044 or p < 0.01). Combining radiomics and clinical features, higher AUC was achieved of the prediction of 3-year disease progression-free survival (PFS) (AUC, 0.78) and 5-year disease PFS (AUC, 0.73), although there was no statistical difference. CONCLUSION The radiomics classifier, Rad-Score, was proven useful for pretreatment prognosis prediction and showed potential in risk stratification for NPC. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00460-3.
Collapse
Affiliation(s)
- Dan Bao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yanfeng Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116 China
| | - Hongxia Zhong
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yayuan Geng
- Huiying Medical Technology (Beijing) Co., Ltd, HaiDian District, B-2 Building, Dongsheng Science Park, Beijing City, 100192 People’s Republic of China
| | - Meng Lin
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Lin Li
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xinming Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
35
|
Zheng Y, Chen L, Liu M, Wu J, Yu R, Lv F. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Front Oncol 2021; 11:618604. [PMID: 34567999 PMCID: PMC8461183 DOI: 10.3389/fonc.2021.618604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives This study sought to develop a multiparametric MRI radiomics-based machine learning model for the preoperative prediction of clinical success for high-intensity-focused ultrasound (HIFU) ablation of uterine leiomyomas. Methods One hundred and thirty patients who received HIFU ablation therapy for uterine leiomyomas were enrolled in this retrospective study. Radiomics features were extracted from T2-weighted (T2WI) image and ADC map derived from diffusion-weighted imaging (DWI). Three feature selection algorithms including least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE), and ReliefF algorithm were used to select radiomics features, respectively, which were fed into four machine learning classifiers including k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) for the construction of outcome prediction models before HIFU treatment. The performance, predication ability, and clinical usefulness of these models were verified and evaluated using receiver operating characteristics (ROC), calibration, and decision curve analyses. Results The radiomics analysis provided an effective preoperative prediction for HIFU ablation of uterine leiomyomas. Using SVM with ReliefF algorithm, the multiparametric MRI radiomics model showed the favorable performance with average accuracy of 0.849, sensitivity of 0.814, specificity of 0.896, positive predictive value (PPV) of 0.903, negative predictive value (NPV) of 0.823, and the area under the ROC curve (AUC) of 0.887 (95% CI = 0.848-0.939) in fivefold cross-validation, followed by RF with ReliefF. Calibration and decision curve analyses confirmed the potential of model in predication ability and clinical usefulness. Conclusions The radiomics-based machine learning model can predict preoperatively HIFU ablation response for the patients with uterine leiomyomas and contribute to determining individual treatment strategies.
Collapse
Affiliation(s)
- Yineng Zheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Liping Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahui Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Gao Y, Mao Y, Lu S, Tan L, Li G, Chen J, Huang D, Zhang X, Qiu Y, Liu Y. Magnetic resonance imaging-based radiogenomics analysis for predicting prognosis and gene expression profile in advanced nasopharyngeal carcinoma. Head Neck 2021; 43:3730-3742. [PMID: 34516714 DOI: 10.1002/hed.26867] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/25/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND To establish a radiomics nomogram for survival prediction and determine if genomic data were related to radiomics signature in advanced nasopharyngeal carcinoma (NPC). METHODS Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI) in 316 patients. A progression-free survival (PFS) nomogram was developed and validated by the combination of the radiomics signature and clinicopathologic factors. Whole transcriptomics sequencing was performed in pretreatment tumor samples; correlation of gene expression and radiomics signature was further investigated. RESULTS A 24-feature-combined radiomics signature was highly correlated with PFS; its integration with clinical predictors showed good prediction performance in the training and the validation cohort (C-index: 0.80 and 0.73). A significant correlation was observed between certain gene expression and Rad-score, especially the mRNA expression of CDKL2, PLIN5, and SPAG1. CONCLUSION As a noninvasive method, the MRI-based radiomics signature might enable the pretreatment prediction of prognosis and gene expressions profile in advanced NPC.
Collapse
Affiliation(s)
- Yan Gao
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanhong Lu
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Lei Tan
- College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha, China
| | - Guo Li
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Juan Chen
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China
| | - Yuanzheng Qiu
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yong Liu
- Department of Otolaryngology - Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, China.,Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
37
|
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021; 11:1523. [PMID: 34573865 PMCID: PMC8465998 DOI: 10.3390/diagnostics11091523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important goal. With the development of the combination of artificial intelligence (AI) technology and medical imaging in recent years, an increasing number of studies have been conducted on image analysis of NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we present a comprehensive overview of NPC imaging research based on radiomics and deep learning. These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of the current studies and the potential of radiomics and deep learning for NPC imaging are discussed. We conclude that future research should establish a large-scale labelled dataset of NPC images and that studies focused on screening for NPC using AI are necessary.
Collapse
Affiliation(s)
- Song Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Zhi-Ling Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| |
Collapse
|
38
|
Kim MJ, Choi Y, Sung YE, Lee YS, Kim YS, Ahn KJ, Kim MS. Early risk-assessment of patients with nasopharyngeal carcinoma: the added prognostic value of MR-based radiomics. Transl Oncol 2021; 14:101180. [PMID: 34274801 PMCID: PMC8319024 DOI: 10.1016/j.tranon.2021.101180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022] Open
Abstract
The current study extracted radiomics—a large quantitative data of imaging features—from magnetic resonance images of patients with nasopharyngeal carcinoma. The survival model fitted with radiomic features showed good prognostic performance in predicting the progression-free survival of patients with nasopharyngeal carcinoma (integrated area under the curve, 0.71; 95% confidence interval, 0.71–0.72). Addition of radiomics to clinical survival model improved the prognostication of progression-free survival in patients diagnosed with nasopharyngeal carcinoma (integrated area under the curve from 0.76 to 0.81, p<0.001).
Objectives To assess the additive prognostic value of MR-based radiomics in predicting progression-free survival (PFS) in patients with nasopharyngeal carcinoma (NPC) Methods Patients newly diagnosed with non-metastatic NPC between June 2006 and October 2019 were retrospectively included and randomly grouped into training and test cohorts (7:3 ratio). Radiomic features (n=213) were extracted from T2-weighted and contrast-enhanced T1-weighted MRI. The patients were staged according to the 8th edition of American Joint Committee on Cancer Staging Manual. The least absolute shrinkage and selection operator was used to select the relevant radiomic features. Univariate and multivariate Cox proportional hazards analyses were conducted for PFS, yielding three different survival models (clinical, stage, and radiomic). The integrated time-dependent area under the curve (iAUC) for PFS was calculated and compared among different combinations of survival models, and the analysis of variance was used to compare the survival models. The prognostic performance of all models was validated using a test set with integrated Brier scores. Results This study included 81 patients (training cohort=57; test cohort=24), and the mean PFS was 57.5 ± 43.6 months. In the training cohort, the prognostic performances of survival models improved significantly with the addition of radiomics to the clinical (iAUC, 0.72–0.80; p=0.04), stage (iAUC, 0.70–0.79; p=0.001), and combined models (iAUC, 0.76–0.81; p<0.001). In the test cohort, the radiomics and combined survival models were robustly validated for their ability to predict PFS. Conclusion Integration of MR-based radiomic features with clinical and stage variables improved the prediction PFS in patients diagnosed with NPC.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Yeoun Eun Sung
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon-Sil Kim
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kook-Jin Ahn
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Sik Kim
- Department of Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
39
|
Spadarella G, Calareso G, Garanzini E, Ugga L, Cuocolo A, Cuocolo R. MRI based radiomics in nasopharyngeal cancer: Systematic review and perspectives using radiomic quality score (RQS) assessment. Eur J Radiol 2021; 140:109744. [PMID: 33962253 DOI: 10.1016/j.ejrad.2021.109744] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND MRI based radiomics has the potential to better define tumor biology compared to qualitative MRI assessment and support decisions in patients affected by nasopharyngeal carcinoma. Aim of this review was to systematically evaluate the methodological quality of studies using MRI- radiomics for nasopharyngeal cancer patient evaluation. METHODS A systematic search was performed in PUBMED, WEB OF SCIENCE and SCOPUS using "MRI, magnetic resonance imaging, radiomic, texture analysis, nasopharyngeal carcinoma, nasopharyngeal cancer" in all possible combinations. The methodological quality of study included ( = 24) was evaluated according to the RQS (Radiomic quality score). Subgroup, for journal type (imaging/clinical) and biomarker (prognostic/predictive), and correlation, between RQS and journal Impact Factor, analyses were performed. Mann-Whitney U test and Spearman's correlation were performed. P value < .05 were defined as statistically significant. RESULTS Overall, no studies reported a phantom study or a test re-test for assessing stability in image, biological correlation or open science data. Only 8% of them included external validation. Almost half of articles (45 %) performed multivariable analysis with non-radiomics features. Only 1 study was prospective (4%). The mean RQS was 7.5 ± 5.4. No significant differences were detected between articles published in clinical/imaging journal and between studies with a predictive or prognostic biomarker. No significant correlation was found between total RQS and Impact Factor of the year of publication (p always > 0.05). CONCLUSIONS Radiomic articles in nasopharyngeal cancer are mostly of low methodological quality. The greatest limitations are the lack of external validation, biological correlates, prospective design and open science.
Collapse
Affiliation(s)
- Gaia Spadarella
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy.
| | - Giuseppina Calareso
- Department of Radiology, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Enrico Garanzini
- Department of Radiology, Fondazione IRCCS, Istituto Nazionale Dei Tumori, Milan, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy; Laboratory of Augmented Reality for Health Monitoring (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
40
|
A systematic review and recommendations on the use of plasma EBV DNA for nasopharyngeal carcinoma. Eur J Cancer 2021; 153:109-122. [PMID: 34153713 DOI: 10.1016/j.ejca.2021.05.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/02/2021] [Accepted: 05/09/2021] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Nasopharyngeal carcinoma (NPC) is an endemic malignancy in Southeast Asia, particularly Southern China. The classical non-keratinising cell type is almost unanimously associated with latent Epstein-Barr virus (EBV) infection. Circulating plasma EBV DNA can be a useful biomarker in various clinical aspects, but comprehensive recommendations and international guidelines are still lacking. We conducted a systematic review of all original articles on the clinical application of plasma EBV DNA for NPC; we further evaluated its strengths and limitations for consideration as standard recommendations. METHODS The search terms 'nasopharyngeal OR nasopharynx', and 'plasma EBV DNA OR cell-free EBV OR cfEBV' were used to identify full-length articles published up to December 2020 in the English literature. Three authors independently reviewed the article titles, removed duplicates and reviewed the remaining articles for eligibility. RESULTS A total of 81 articles met the eligibility criteria. Based on the levels of evidence and grades of recommendation assessed, it is worth considering the inclusion of plasma EBV DNA in screening, pre-treatment work-up for enhancing prognostication and tailoring of treatment strategy, monitoring during radical treatment, post-treatment surveillance for early detection of relapse, and monitoring during salvage treatment for recurrent or metastatic NPC. One major limitation is the methodology of measurement requiring harmonisation for consistent comparability. CONCLUSIONS The current comprehensive review supports the inclusion of plasma EBV DNA in international guidelines in the clinical aspects listed, but methodological issues must be resolved before global application.
Collapse
|
41
|
Peng Z, Wang Y, Wang Y, Jiang S, Fan R, Zhang H, Jiang W. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci 2021; 17:475-486. [PMID: 33613106 PMCID: PMC7893590 DOI: 10.7150/ijbs.55716] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
With the continuous development of medical image informatics technology, more and more high-throughput quantitative data could be extracted from digital medical images, which has resulted in a new kind of omics-Radiomics. In recent years, in addition to genomics, proteomics and metabolomics, radiomic has attracted the interest of more and more researchers. Compared to other omics, radiomics can be perfectly integrated with clinical data, even with the pathology and molecular biomarker, so that the study can be closer to the clinical reality and more revealing of the tumor development. Mass data will also be generated in this process. Machine learning, due to its own characteristics, has a unique advantage in processing massive radiomic data. By analyzing mass amounts of data with strong clinical relevance, people can construct models that more accurately reflect tumor development and progression, thereby providing the possibility of personalized and sequential treatment of patients. As one of the cancer types whose treatment and diagnosis rely on imaging examination, radiomics has a very broad application prospect in head and neck cancers (HNC). Until now, there have been some notable results in HNC. In this review, we will introduce the concepts and workflow of radiomics and machine learning and their current applications in head and neck cancers, as well as the directions and applications of artificial intelligence in the treatment and diagnosis of HNC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410078, Hunan, China
| |
Collapse
|
42
|
George MM, Tolley NS. AIM in Otolaryngology and Head & Neck Surgery. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Chen X, Cao X, Jing B, Xia W, Ke L, Xiang Y, Liu K, Qiang M, Liang C, Li J, Gao M, Li W, Miao J, Liu G, Cai Z, Lv S, Guo X, Li C, Lv X. Prognostic and Treatment Guiding Significance of MRI-Based Tumor Burden Features and Nodal Necrosis in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:537318. [PMID: 33042831 PMCID: PMC7518313 DOI: 10.3389/fonc.2020.537318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/14/2020] [Indexed: 12/08/2022] Open
Abstract
We aimed to develop a nomogram integrating MRI-based tumor burden features (MTBF), nodal necrosis, and some clinical factors to forecast the distant metastasis-free survival (DMFS) of patients suffering from non-metastatic nasopharyngeal carcinoma (NPC). A total of 1640 patients treated at Sun Yat-sen University Cancer Center (Guangzhou, China) from 2011 to 2016 were enrolled, among which 1148 and 492 patients were randomized to a training cohort and an internal validation cohort, respectively. Additionally, 200 and 257 patients were enrolled in the Foshan and Dongguan validation cohorts, respectively, which served as independent external validation cohorts. The MTBF were developed from the stepwise regression of six multidimensional tumor burden variables, based on which we developed a nomogram also integrating nodal necrosis and clinical features. This model divided the patients into high- and low-risk groups by an optimal cutoff. Compared with those of patients in the low-risk group, the DMFS [hazard ratio (HR): 4.76, 95% confidence interval (CI): 3.39–6.69; p < 0.0001], and progression-free survival (PFS; HR: 4.11, 95% CI: 3.13–5.39; p < 0.0001) of patients in the high-risk group were relatively poor. Furthermore, in the training cohort, the 3-year DMFS of high-risk patients who received induction chemotherapy (ICT) combined with concurrent chemoradiotherapy (CCRT) was better than that of those who were treated with CCRT alone (p = 0.0340), whereas low-risk patients who received ICT + CCRT had a similar DMFS to those who only received CCRT. The outcomes we obtained were all verified in the three validation cohorts. The survival model can be used as a reliable prognostic tool for NPC patients and is helpful to determine patients who will benefit from ICT.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xun Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bingzhong Jing
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Information Technology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kuiyuan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengyun Qiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chixiong Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianpeng Li
- Department of Radiology, Dongguan People’s Hospital, Dongguan, China
| | - Mingyong Gao
- Department of Medical Imaging, The First People’s Hospital of Foshan, Foshan, China
| | - Wangzhong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jingjing Miao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guoying Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhuochen Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shuhui Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaofeng Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Information Technology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xing Lv,
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, China
- Chaofeng Li,
| |
Collapse
|