1
|
Yang JL, Ma JJ, Qu TY, Dai Q, Leng J, Fang L, Wu J, Li YJ, Yu HF. Glycolysis-related lncRNA FTX upregulates YAP1 to facilitate colorectal cancer progression via sponging miR-215-3p. Sci Rep 2025; 15:9929. [PMID: 40121300 PMCID: PMC11929783 DOI: 10.1038/s41598-025-94638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Increased evidence reveals that glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNA FTX in energy metabolism and cancer progression remain unclear. In this study we aim to show that lncRNA FTX was significantly upregulated in cancer tissues and serum of CRC patients and CRC cell lines. Function study indicated that it could promote aerobic glycolysis, cell proliferation, migration and invasion in colorectal cancer cells. Further mechanistic studies showed, lncRNA FTX was found to function as a sponge for miR-215-3p, which reduced the ability of miR-215-3p to repress the YAP1 oncoprotein. Additionally, a negative correlation was observed between lncRNA FTX and miR-215-3p expression, and the knockdown of lncRNA FTX or miR-215-3p overexpression yielded opposite effects. In conclusion, this study demonstrates that FTX could directly combine with miR-215-3p as a competitive endogenous RNA, thus promoting the aerobic glycolysis and progression of CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Jin-Lan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing-Jing Ma
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Tian-Yin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing Leng
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Lin Fang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ya-Jun Li
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Huang-Fei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China.
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
2
|
Abdulla A, Sadida HQ, Jerobin J, Elfaki I, Mir R, Mirza S, Singh M, Macha MA, Uddin S, Fakhro K, Bhat AA, Akil ASAS. Unraveling molecular interconnections and identifying potential therapeutic targets of significance in obesity-cancer link. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:8-27. [PMID: 40040878 PMCID: PMC11873641 DOI: 10.1016/j.jncc.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 11/11/2024] [Indexed: 03/06/2025] Open
Abstract
Obesity, a global health concern, is associated with severe health issues like type 2 diabetes, heart disease, and respiratory complications. It also increases the risk of various cancers, including melanoma, endometrial, prostate, pancreatic, esophageal adenocarcinoma, colorectal carcinoma, renal adenocarcinoma, and pre-and post-menopausal breast cancer. Obesity-induced cellular changes, such as impaired CD8+ T cell function, dyslipidemia, hypercholesterolemia, insulin resistance, mild hyperglycemia, and fluctuating levels of leptin, resistin, adiponectin, and IL-6, contribute to cancer development by promoting inflammation and creating a tumor-promoting microenvironment rich in adipocytes. Adipocytes release leptin, a pro-inflammatory substance that stimulates cancer cell proliferation, inflammation, and invasion, altering the tumor cell metabolic pathway. Adiponectin, an insulin-sensitizing adipokine, is typically downregulated in obese individuals. It has antiproliferative, proapoptotic, and antiangiogenic properties, making it a potential cancer treatment. This narrative review offers a comprehensive examination of the molecular interconnections between obesity and cancer, drawing on an extensive, though non-systematic, survey of the recent literature. This approach allows us to integrate and synthesize findings from various studies, offering a cohesive perspective on emerging themes and potential therapeutic targets. The review explores the metabolic disturbances, cellular alterations, inflammatory responses, and shifts in the tumor microenvironment that contribute to the obesity-cancer link. Finally, it discusses potential therapeutic strategies aimed at disrupting these connections, offering valuable insights into future research directions and the development of targeted interventions.
Collapse
Affiliation(s)
- Alanoud Abdulla
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Hana Q. Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory of Animal Research Center, Qatar University, Doha, Qatar
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Ajaz A. Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| | - Ammira S. Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Research Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
3
|
Martínez-Espinosa I, Serrato JA, Ortiz-Quintero B. MicroRNAs in Lung Cancer Brain Metastasis. Int J Mol Sci 2024; 25:10325. [PMID: 39408656 PMCID: PMC11476622 DOI: 10.3390/ijms251910325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Brain metastasis is a significant clinical challenge for patients with advanced lung cancer, occurring in about 20-40% of cases. Brain metastasis causes severe neurological symptoms, leading to a poor prognosis and contributing significantly to lung cancer-related mortality. However, the underlying molecular mechanism behind brain metastasis remains largely unknown. MicroRNAs (miRNAs) are small, non-coding RNAs linked to several aspects of cancer progression, including metastasis. In the context of lung cancer, significant research has shown the involvement of miRNAs in regulating critical pathways related to metastatic spread to the brain. This review summarizes the scientific evidence regarding the regulatory roles of intra- and extracellular miRNAs, which specifically drive the spread of lung cancer cells to the brain. It also revises the known molecular mechanisms of brain metastasis, focusing on those from lung cancer as the primary tumor to better understand the complex mechanisms underlying this regulation. Understanding these complex regulatory mechanisms holds promise for developing novel diagnostic biomarkers and potential therapeutic strategies in brain metastasis.
Collapse
Affiliation(s)
| | | | - Blanca Ortiz-Quintero
- Department of Molecular Biomedicine and Translational Research, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080 Mexico City, Mexico
| |
Collapse
|
4
|
Tan L, Zhang H, Ding Y, Huang Y, Sun D. CRTAC1 identified as a promising diagnosis and prognostic biomarker in lung adenocarcinoma. Sci Rep 2024; 14:11223. [PMID: 38755183 PMCID: PMC11099150 DOI: 10.1038/s41598-024-61804-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
CRTAC1, one of the pyroptosis-related genes, has been identified as a protective factor in certain kinds of cancer, such as gastric adenocarcinoma and bladder cancer. The study aimed to investigate the role of CRTAC1 in lung adenocarcinoma (LUAD). LUAD datasets were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA), pyroptosis-related genes from GeneCard. Limma package used to find differentially expressed genes (DEGs), least absolute shrinkage and selection operator (LASSO) regression and weighted genes co-expression network analysis (WGCNA) to identify CRTAC1 as hub gene. CRTAC1 expression was confirmed in a real-world cohort using quantitative polymerase chain reaction (qPCR) and Western Blot (WB) analyses. Cellular experiments were conducted to investigate CRTAC1's potential oncogenic mechanisms. CRTAC1 mRNA expression was significantly lower in LUAD tissues (p < 0.05) and showed high accuracy in diagnosing LUAD. Reduced CRTAC1 expression was associated with a poor prognosis. Higher CRTAC1 expression correlated with increased immune cell infiltration. Individuals with high CRTAC1 expression showed increased drug sensitivity. Additionally, qPCR and WB analyses showed that CRTAC1 expression was lower in tumor tissue compared to adjacent normal tissue at both the RNA and protein levels. Upregulation of CRTAC1 significantly inhibited LUAD cell proliferation, invasion, and migration in cellular experiments. CRTAC1 has the potential to serve as a diagnostic and prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Lin Tan
- Tianjin Medical University Graduate School, Tianjin, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Han Zhang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yun Ding
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Yangyun Huang
- Tianjin Medical University Graduate School, Tianjin, China
- Clinical School of Thoracic, Tianjin Medical University, Tianjin, China
| | - Daqiang Sun
- Tianjin Chest Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
5
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
6
|
Eraky AM. Advances in Brain Metastases Diagnosis: Non-coding RNAs As Potential Biomarkers. Cureus 2023; 15:e36337. [PMID: 37077610 PMCID: PMC10109215 DOI: 10.7759/cureus.36337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
Brain metastasis is considered the most common brain tumor. They arise from different primary cancers. The most common primary tumors giving brain metastases include breast, colorectal, lung, melanoma, and renal cancer. Depending only on history, physical examination, and conventional imaging modalities makes brain tumors diagnosis difficult. Rapid and non-invasive promising modalities could diagnose and differentiate between different brain metastases without exposing the patients to unnecessary brain surgeries for biopsies. One of these promising modalities is non-coding RNAs (ncRNAs). NcRNAs can determine brain metastases' prognosis, chemoresistance, and radioresistance. It also helps us to understand the pathophysiology of brain metastases development. Additionally, ncRNAs may work as potential therapeutic targets for brain metastases treatment and prevention. Herein, we present deregulated ncRNAs in different brain metastases, including microRNAs and long non-coding RNAs (lncRNAs), such as gastric adenocarcinoma, colorectal, breast, melanoma, lung, and prostate cancer. Additionally, we focus on serum and cerebrospinal fluid (CSF) expression of these ncRNAs in patients with brain metastases compared to patients with primary tumors. Moreover, we discuss the role of ncRNAs in modulating the immune response in the brain microenvironment. More clinical studies are encouraged to assess the specificity and sensitivity of these ncRNAs.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
7
|
Feng T, Yao Y, Luo L, Zou H, Xiang G, Wei L, Yang Q, Shi Y, Huang X, Lai C. ST8SIA6-AS1 contributes to hepatocellular carcinoma progression by targeting miR-142-3p/HMGA1 axis. Sci Rep 2023; 13:650. [PMID: 36635290 PMCID: PMC9837176 DOI: 10.1038/s41598-022-26643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (LIHC) accounts for 90% of all liver cancers and is a serious health concern worldwide. Long noncoding RNAs (lncRNAs) have been observed to sponge microRNAs (miRNAs) and participate in the biological processes of LIHC. This study aimed to evaluate the role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis in regulating LIHC progression. RT-qPCR and western blotting were performed to determine the levels of ST8SIA6-AS1, miR-142-3p, and HMGA1 in LIHC. The relationship between ST8SIA6-AS1, miR-142-3p, and HMGA1 was assessed using luciferase assay. The role of the ST8SIA6-AS1-miR-142-3p-HMGA1 axis was evaluated in vitro using LIHC cells. Expression of ST8SIA6-AS1 and HMGA1 was significantly upregulated, whereas that of miR-142-3p was markedly lowered in LIHC specimens and cells. ST8SIA6-AS1 accelerated cell growth, invasion, and migration and suppressed apoptosis in LIHC. Notably, ST8SIA6-AS1 inhibited HMGA1 expression by sponging miR-142-3p in LIHC cells. In conclusion, sponging of miR-142-3p by ST8SIA6-AS1 accelerated the growth of cells while preventing cell apoptosis in LIHC cells, and the inhibitory effect of miR-142-3p was abrogated by elevating HMGA1 expression. The ST8SIA6-AS1-miR-142-3p-HMGA1 axis represents a potential target for the treatment of patients with LIHC.
Collapse
Affiliation(s)
- Tianhang Feng
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Yutong Yao
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Le Luo
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Haibo Zou
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Guangming Xiang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Lingling Wei
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Qinyan Yang
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Ying Shi
- grid.54549.390000 0004 0369 4060Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000 Sichuan China
| | - Xiaolun Huang
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China. .,Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, Chengdu, 610000, Sichuan, China.
| | - Chunyou Lai
- Department of Hepatobiliary and Pancreatic Surgery Center, Cell Transplantation Center, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32, West Section 1, Yihuan Road, Qingyang District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
8
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
9
|
Siegl F, Vecera M, Roskova I, Smrcka M, Jancalek R, Kazda T, Slaby O, Sana J. The Significance of MicroRNAs in the Molecular Pathology of Brain Metastases. Cancers (Basel) 2022; 14:cancers14143386. [PMID: 35884446 PMCID: PMC9322877 DOI: 10.3390/cancers14143386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022] Open
Abstract
Brain metastases are the most frequent intracranial tumors in adults and the cause of death in almost one-fourth of cases. The incidence of brain metastases is steadily increasing. The main reason for this increase could be the introduction of new and more efficient therapeutic strategies that lead to longer survival but, at the same time, cause a higher risk of brain parenchyma infiltration. In addition, the advances in imaging methodology, which provide earlier identification of brain metastases, may also be a reason for the higher recorded number of patients with these tumors. Metastasis is a complex biological process that is still largely unexplored, influenced by many factors and involving many molecules. A deeper understanding of the process will allow the discovery of more effective diagnostic and therapeutic approaches that could improve the quality and length of patient survival. Recent studies have shown that microRNAs (miRNAs) are essential molecules that are involved in specific steps of the metastatic cascade. MiRNAs are endogenously expressed small non-coding RNAs that act as post-transcriptional regulators of gene expression and thus regulate most cellular processes. The dysregulation of these molecules has been implicated in many cancers, including brain metastases. Therefore, miRNAs represent promising diagnostic molecules and therapeutic targets in brain metastases. This review summarizes the current knowledge on the importance of miRNAs in brain metastasis, focusing on their involvement in the metastatic cascade and their potential clinical implications.
Collapse
Affiliation(s)
- Frantisek Siegl
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Marek Vecera
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
| | - Ivana Roskova
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno and Faculty of Medicine of Masaryk University, 625 00 Brno, Czech Republic; (I.R.); (M.S.)
| | - Radim Jancalek
- Department of Neurosurgery, St. Annes University Hospital Brno and Faculty of Medicine of Masaryk University, 656 91 Brno, Czech Republic;
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic;
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sana
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic; (F.S.); (M.V.); (O.S.)
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Faculty of Medicine of Masaryk University, 656 53 Brno, Czech Republic
- Department of Pathology, University Hospital Brno, 625 00 Brno, Czech Republic
- Correspondence: ; Tel.: +420-549-495-246
| |
Collapse
|
10
|
Lin TC, Hsiao M. Leptin and Cancer: Updated Functional Roles in Carcinogenesis, Therapeutic Niches, and Developments. Int J Mol Sci 2021; 22:ijms22062870. [PMID: 33799880 PMCID: PMC8002181 DOI: 10.3390/ijms22062870] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin is an obesity-associated adipokine that is known to regulate energy metabolism and reproduction and to control appetite via the leptin receptor. Recent work has identified specific cell types other than adipocytes that harbor leptin and leptin receptor expression, particularly in cancers and tumor microenvironments, and characterized the role of this signaling axis in cancer progression. Furthermore, the prognostic significance of leptin in various types of cancer and the ability to noninvasively detect leptin levels in serum samples have attracted attention for potential clinical applications. Emerging findings have demonstrated the direct and indirect biological effects of leptin in regulating cancer proliferation, metastasis, angiogenesis and chemoresistance, warranting the exploration of the underlying molecular mechanisms to develop a novel therapeutic strategy. In this review article, we summarize and integrate transcriptome and clinical data from cancer patients together with the recent findings related to the leptin signaling axis in the aforementioned malignant phenotypes. In addition, a comprehensive analysis of leptin and leptin receptor distribution in a pancancer panel and in individual cell types of specific organs at the single-cell level is presented, identifying those sites that are prone to leptin-mediated tumorigenesis. Our results shed light on the role of leptin in cancer and provide guidance and potential directions for further research for scientists in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-27871243; Fax: +886-2-27899931
| |
Collapse
|