1
|
Ming J, Cheng F, Fu Y, Zhang M, Rou Q, Liu K, Nuertai Z, Xu S, Tao L, Abudujapar A, Liu Y. Long non-coding RNA H19 promotes cervical cancer development via targeting the microRNA-140/ALDH1A1 axis. Eur J Med Res 2025; 30:95. [PMID: 39940029 PMCID: PMC11823256 DOI: 10.1186/s40001-025-02350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Dysregulation of long non-coding RNA H19 (lncRNA H19) is involved in cervical cancer (CC) progression. This study aims to unveil the specific role and relevant mechanism of lncRNA H19 in CC. METHODS The expression of lncRNA H19 in CC cells was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). CC cells were transfected with sh-H19, followed by cell proliferation, apoptosis, migration and invasion were examined. After location of H19 in cells using fluorescence in Situ Hybridization (FISH), target microRNAs (miRNAs) and genes associated with lncRNA H19 were predicted using bioinformatics analysis and validated by dual-luciferase reporter assay. Finally, the specific role of lncRNA H19 in CC was explored in vivo. RESULTS The upregulation of lncRNA H19 was observed in CC cells. LncRNA H19 knockdown inhibited the proliferation, migration, and invasion of CC cells, and remarkably promoted CC cell apoptosis. LncRNA H19 was localized in the nucleus and interacted with miR-140 that was downregulated in CC cells. MiR-140 inhibition reversed the effects of lncRNA H19 knockdown on CC cell development. MiR-140 targets ALDH1A1, and lncRNA H19 knockdown decreased the ALDH1A1 expression, which was rescued by miR-140 inhibition. In vivo experiments also shown that reduction of lncRNA H19 diminishes tumor growth via targeting the miR-140/ALDH1A1 axis. CONCLUSION LncRNA H19 promotes the malignant progression of CC through targeting miR-140/ALDH1A1 axis.
Collapse
Affiliation(s)
- Jie Ming
- Medical Imaging Center, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Fang Cheng
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Yating Fu
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, 830002, Xinjiang, China
| | - Meng Zhang
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Qian Rou
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Kaixiong Liu
- Department of Oncology, Bachu County People's Hospital, Bachu, 843800, Xinjiang, China
| | - Zinati Nuertai
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Shanshan Xu
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ling Tao
- Department of Gynecology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Alfira Abudujapar
- Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Ying Liu
- Department of Special Needs Comprehensive, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
- Department of Oncology, Bachu County People's Hospital, Bachu, 843800, Xinjiang, China.
| |
Collapse
|
2
|
Abdoli M, Hoseini SM, Sandoghsaz RS, Javaheri A, Montazeri F, Moshtaghioun SM. Endometriotic lesions and their recurrence: A Study on the mediators of immunoregulatory (TGF-β/miR-20a) and stemness (NANOG/miR-145). J Reprod Immunol 2024; 166:104336. [PMID: 39366216 DOI: 10.1016/j.jri.2024.104336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Endometriosis is a common estrogen-dependent disease that involves various cellular processes. Additionally, miRNAs play a crucial role in the development of the disease as an important component of the microenvironment. In this study, tissue specimens of eutopic and ectopic lesions of 20 women, whose endometriosis was later approved by the pathology laboratory, were biopsied through laparoscopy. As a control group, endometrial tissue specimens were collected from 20 women who underwent curettage for reasons unrelated to endometriosis. The expression levels of miR-20A and miR-145 and their target genes, TGF-β and NANOG, were measured in these samples as markers of stemness and immunomodulatory properties, respectively. The study also aimed to compare the expression levels of target genes and miRNAs in ectopic lesions regarding endometriosis recurrence post-surgery. The study revealed that the expression of TGF-β and NANOG genes was significantly upregulated in endometriotic tissues compared to the control group. There was also a notable increase in miR-20A and miR-145 expression in the endometriotic tissues compared to the control group. While there was no significant correlation between the expression of miR-20a and TGF-β, we observed a negative correlation between the expression level of miR-145 and NANOG. Additionally, the ROC curve analysis emphasized miR-14 as a potential biomarker for endometriosis over miR-20a. However, our findings on disease recurrence underscore the importance of miR-20a in the early detection of endometriosis recurrence.
Collapse
Affiliation(s)
| | - Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Reyhaneh Sadat Sandoghsaz
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Atiyeh Javaheri
- Department of Obstetrics and Gynecology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | |
Collapse
|
3
|
Zeng X, Wang Y, Liu B, Rao X, Cao C, Peng F, Zhi W, Wu P, Peng T, Wei Y, Chu T, Xu M, Xu Y, Ding W, Li G, Lin S, Wu P. Multi-omics data reveals novel impacts of human papillomavirus integration on the epigenomic and transcriptomic signatures of cervical tumorigenesis. J Med Virol 2023; 95:e28789. [PMID: 37212325 DOI: 10.1002/jmv.28789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023]
Abstract
Integration of human papilloma virus (HPV) DNA into the human genome may progressively contribute to cervical carcinogenesis. To explore how HPV integration affects gene expression by altering DNA methylation during carcinogenesis, we analyzed a multiomics dataset for cervical cancer. We obtained multiomics data by HPV-capture sequencing, RNA sequencing, and Whole Genome Bisulfite Sequencing from 50 patients with cervical cancer. We detected 985 and 485 HPV-integration sites in matched tumor and adjacent paratumor tissues. Of these, LINC00486 (n = 19), LINC02425 (n = 11), LLPH (n = 11), PROS1 (n = 5), KLF5 (n = 4), LINC00392 (n = 3), MIR205HG (n = 3) and NRG1 (n = 3) were identified as high-frequency HPV-integrated genes, including five novel recurrent genes. Patients at clinical stage II had the highest number of HPV integrations. E6 and E7 genes of HPV16 but not HPV18 showed significantly fewer breakpoints than random distribution. HPV integrations occurring in exons were associated with altered gene expression in tumor tissues but not in paratumor tissues. A list of HPV-integrated genes regulated at transcriptomic or epigenetic level was reported. We also carefully checked the candidate genes with regulation pattern correlated in both levels. HPV fragments integrated at MIR205HG mainly came from the L1 gene of HPV16. RNA expression of PROS1 was downregulated when HPV integrated in its upstream region. RNA expression of MIR205HG was elevated when HPV integrated into its enhancer. The promoter methylation levels of PROS1 and MIR205HG were all negatively correlated with their gene expressions. Further experimental validations proved that upregulation of MIR205HG could promote the proliferative and migrative abilities of cervical cancer cells. Our data provides a new atlas for epigenetic and transcriptomic regulations regarding HPV integrations in cervical cancer genome. We demonstrate that HPV integration may affect gene expression by altering methylation levels of MIR205HG and PROS1. Our study provides novel biological and clinical insights into HPV-induced cervical cancer.
Collapse
Affiliation(s)
- Xi Zeng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuyouye Wang
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghan Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinjie Rao
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Canhui Cao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fang Peng
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenhua Zhi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Peng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tian Chu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miaochun Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yashi Xu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wencheng Ding
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoliang Li
- Key Laboratory of Smart Farming for Agricultural Animals and Hubei Key Laboratory of Agricultural Bioinformatics, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shitong Lin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Yuan CH, Hsu WC, Huang AM, Yuan BC, Chen IH, Hsu CA, Chen RF, Chu YM, Lin HH, Ke HL. MicroRNA-145-5p modulates Krüppel-like factor 5 and inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma. BMC Mol Cell Biol 2022; 23:28. [PMID: 35836107 PMCID: PMC9284881 DOI: 10.1186/s12860-022-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background In several human cancers, Krüppel-like factor 5 (KLF5), a zinc finger transcription factor, can contribute to both tumor progression or suppression; however, the precise role of KLF5 in nasopharyngeal carcinoma (NPC) remains poorly understood. In this study, the association between KLF5 and microRNA-145-5p (miR-145-5p) in NPC cells was elucidated. Results Our results showed that KLF5 expression was up-regulated in NPC group compared to normal group. We found that KLF5 exhibited an oncogenic role in NPC cells. The upregulation of miR-145-5p inhibited the proliferation, migration, and invasion of NPC cells. It was observed that miR-145-5p could down-regulate the mRNA and protein expression of KLF5 in NPC cell lines. Additionally, the activity of focal adhesion kinase (FAK), a migration marker, was regulated by miR-145-5p and KLF5 in NPC cells. Conclusions The results of this study indicated that miR-145-5p could repress the proliferation, migration, and invasion of NPC cells via KLF5/FAK regulation, and could be a potential therapeutic target for patients with NPC. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00430-9.
Collapse
|
5
|
Zhou RT, Ni YR, Zeng FJ. The roles of long noncoding RNAs in the regulation of OCT4 expression. Stem Cell Res Ther 2022; 13:383. [PMID: 35907897 PMCID: PMC9338536 DOI: 10.1186/s13287-022-03059-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
OCT4 is a major transcription factor that maintains the pluripotency of stem cells, including embryonic stem cells, induced pluripotent stem cells and cancer stem cells. An increasing number of long noncoding RNAs have been reported to participate in the regulation of OCT4 expression through various mechanisms, including binding with the OCT4 gene promoter to regulate local methylation; promoting chromosomal spatial folding to form an inner ring, thereby aggregating OCT4 cis-acting elements scattered in discontinuous sites of the chromosome; competitively binding microRNAs with OCT4 to upregulate OCT4 expression at the posttranscriptional level; and sharing a promoter with OCT4. Moreover, the transcription of some long noncoding RNAs is regulated by OCT4, and certain long noncoding RNAs form feedback regulatory loops with OCT4. In this review, we summarized the research progress of the long noncoding RNAs involved in the regulation of OCT4 expression.
Collapse
Affiliation(s)
- Rui-Ting Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China.,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.,Medical College, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yi-Ran Ni
- Medical College, China Three Gorges University, Yichang, 443002, Hubei, China.,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Fan-Jun Zeng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, Hubei, China. .,Yichang Central People's Hospital, Yichang, 443003, Hubei, China.
| |
Collapse
|
6
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
7
|
Wei J, Gao Y, Li Z, Jia H, Han B. LncRNA SNHG6 facilitates cell proliferation, migration, invasion and EMT by upregulating UCK2 and activating the Wnt/β-catenin signaling in cervical cancer. Bioorg Chem 2021; 120:105488. [PMID: 35033815 DOI: 10.1016/j.bioorg.2021.105488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023]
Abstract
Cervical cancer is a most prevalent gynecological malignancy around the world. Long non-coding RNAs (lncRNAs) are recognized as crucial players in the cellular activities of diverse cancers including cervical cancer. We aimed to reveal the biological function of lncRNA small nucleolar RNA host gene 6 (SNHG6) in cervical cancer. Our findings illuminated that SNHG6 expression was elevated in cervical cancer tissues and cell lines, and highly expressed SNHG6 was associated with poor outcome in patients with cervical cancer. Moreover, knockdown of SNHG6 repressed cervical cancer development via inhibiting cell proliferation and migration and accelerating cell apoptosis. Further, SNHG6 was a sponge of miR-485-3p and uridine-cytidine kinase 2 (UCK2) was the functional target of miR-485-3p. SNHG6 increased UCK2 expression by binding with miR-485-3p in cervical cancer cells. The rescue experiments showed that SNHG6 contributed to malignant phenotypes of cervical cancer cells by the miR-485-3p/UCK2 axis. Additionally, SNHG6 activated the Wnt/β-catenin pathway to enhance the proliferative and migratory ability of cervical cancer cells. Overall, this work revealed that SNHG6 promoted malignant behaviors of cervical cancer cells by binding with miR-485-3p to regulate UCK2 and activating the Wnt/β-catenin pathway, which may offer a beneficial direction to treat cervical cancer.
Collapse
Affiliation(s)
- Jing Wei
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - YuHua Gao
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - HaiQing Jia
- Department of Gynecology, Cancer Hospital and Institute, China Medical University, Shenyang 110042, Liaoning, China
| | - Bing Han
- Department of The Sixth General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
8
|
Song H, Liu Y, Liang H, Jin X, Liu L. SPINT1-AS1 Drives Cervical Cancer Progression via Repressing miR-214 Biogenesis. Front Cell Dev Biol 2021; 9:691140. [PMID: 34350182 PMCID: PMC8326843 DOI: 10.3389/fcell.2021.691140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidences have revealed the dysregulated expressions and critical roles of non-coding RNAs in various malignancies, including cervical cancer. Nevertheless, our knowledge about the vast majority of non-coding RNAs is still lacking. Here we identified long non-coding RNA (lncRNA) SPINT1-AS1 as a novel cervical cancer-associated lncRNA. SPINT1-AS1 was increased in cervical cancer and correlated with advanced stage and poor prognosis. SPINT1-AS1 was a direct downstream target of miR-214, a well-known tumor suppressive microRNA (miRNA) in cervical cancer. Intriguingly, SPINT1-AS1 was also found to repress miR-214 biogenesis via binding DNM3OS, the primary transcript of miR-214. The interaction between SPINT1-AS1 and DNM3OS repressed the binding of DROSHA and DGCR8 to DNM3OS, blocked DNM3OS cleavage, and therefore repressed mature miR-214 biogenesis. The expression of SPINT1-AS1 was significantly negatively correlated with miR-214 in cervical cancer tissues, supporting the reciprocal repression between SPINT1-AS1 and miR-214 in vivo. Through downregulating mature miR-214 level, SPINT1-AS1 upregulated the expression of β-catenin, a target of miR-214. Thus, SPINT1-AS1 further activated Wnt/β-catenin signaling in cervical cancer. Functionally, SPINT1-AS1 drove cervical cancer cellular proliferation, migration, and invasion in vitro, and also tumorigenesis in vivo. Deletion of the region mediating the interaction between SPINT1-AS1 and DNM3OS, overexpression of miR-214, and inhibition of Wnt/β-catenin signaling all reversed the roles of SPINT1-AS1 in cervical cancer. Collectively, these findings identified SPINT1-AS1 as a novel cervical cancer-associated oncogenic lncRNA which represses miR-214 biogenesis and activates Wnt/β-catenin signaling, highlighting its potential as prognostic biomarker and therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China.,Department of Gynecology, Xuzhou Renci Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Hui Liang
- Department of Cervical Disease, Xuzhou Maternal and Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Medical Department, Xuzhou Central Hospital, Xuzhou, China
| | - Liping Liu
- Department of Research and Development, Shanghai Lichun Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
9
|
Luo Y, Chen C. The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci 2021; 112:2097-2117. [PMID: 33811715 PMCID: PMC8177779 DOI: 10.1111/cas.14910] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Krüppel‐like factor 5 (KLF5) is a member of the KLF family. Recent studies have suggested that KLF5 regulates the expression of a large number of new target genes and participates in diverse cellular functions, such as stemness, proliferation, apoptosis, autophagy, and migration. In response to multiple signaling pathways, various transcriptional modulation and posttranslational modifications affect the expression level and activity of KLF5. Several transgenic mouse models have revealed the physiological and pathological functions of KLF5 in different cancers. Studies of KLF5 will provide prognostic biomarkers, therapeutic targets, and potential drugs for cancers.
Collapse
Affiliation(s)
- Yao Luo
- Medical Faculty of Kunming University of Science and Technology, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Yuan C, Yuan H, Chen L, Sheng M, Tang W. A novel three-long noncoding RNA risk score system for the prognostic prediction of triple-negative breast cancer. Biomark Med 2021; 15:43-55. [PMID: 33427499 DOI: 10.2217/bmm-2020-0505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is characterized by fast tumor increase, rapid recurrence and natural metastasis. We aimed to identify a genetic signature for predicting the prognosis of TNBC. Materials & methods: We conducted a weighted correlation network analysis of datasets from the Gene Expression Omnibus. Multivariate Cox regression was used to construct a risk score model. Results: The multi-factor risk scoring model was meaningfully associated with the prognosis of patients with TBNC. The predictive power of the model was demonstrated by the time-dependent receiver operating characteristic curve and Kaplan-Meier curve, and verified using a validation set. Conclusion: We established a long noncoding RNA-based model for the prognostic prediction of TNBC.
Collapse
Affiliation(s)
- Chao Yuan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Hongjun Yuan
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Li Chen
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Miaomiao Sheng
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Wenru Tang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical Faculty, Kunming University of Science & Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|