1
|
Talarico G, Franceschini A, Raveane A, Falvo P, Mazzara S, Melle F, Motta G, Orecchioni S, Tenore A, Gregato G, Poletti C, Chiarle R, Pileri S, Mancuso P, Bertolini F. HSP and CD279 gene expression as candidate biomarkers in symptomatic LGLL patients. Discov Oncol 2024; 15:764. [PMID: 39692827 DOI: 10.1007/s12672-024-01657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The clinical presentation of T-cell large granular lymphocytic leukemia (T-LGLL) is extremely variable: 30% of patients have neutropenia with no associated symptoms, others present with bacterial infections and sepsis may occur. Tools to predict patient outcome are lacking. Stemming from preliminary results obtained by single cell-RNAseq we investigated by qPCR HSP and IFIT gene families in 27 LGLL patients (23T-LGLL and 4 NK-LGLL), including 11 with neutropenia and/or thrombocytopenia and 16 asymptomatic for the disease. HSP90AA1 and HSPA1B, among HSP family and CD279 exhibited a significantly higher expression in CD3 + CD57 + sorted cells of symptomatic LGLL patients compared to asymptomatic patients and healthy controls. Also, monocytes derived from symptomatic LGLL patients expressed high levels of CCL3, CCL4 and CCL5 mRNA and of IL-1β, IL-6, TNF, and PD-L1 mRNA, thus confirming a pro-inflammatory cytokine profile reminiscent of a non-classical phenotype. Overall, these data provide a rationale for considering HSP and CD279 genes as potential biomarkers for distinguishing symptomatic LGLL patients from asymptomatic ones, emphasizing the importance of further research to explore their implications for targeted therapy development.
Collapse
Affiliation(s)
- Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Andrea Franceschini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
- Human Technopole, 20157, Milan, Italy
| | - Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Saveria Mazzara
- Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milan, Italy
| | - Federica Melle
- Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milan, Italy
| | - Giovanna Motta
- Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Annamaria Tenore
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Giuliana Gregato
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Claudia Poletti
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Roberto Chiarle
- Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milan, Italy
| | - Stefano Pileri
- Haematopathology Division, IRCCS, Istituto Europeo Di Oncologia, IEO, Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, MI, Italy.
- Onco-Tech Lab, European Institute of Oncology IRCCS and Politecnico di Milano, Milan, Italy.
| |
Collapse
|
2
|
Nasrullah M, Kc R, Nickel K, Parent K, Kucharski C, Meenakshi Sundaram DN, Rajendran AP, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia. ACS Pharmacol Transl Sci 2024; 7:2840-2855. [PMID: 39296267 PMCID: PMC11406681 DOI: 10.1021/acsptsci.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) in gene-targeted treatments is substantial, but their suboptimal delivery impedes widespread clinical applications. Critical among these is the inability of siRNAs to traverse the cell membranes due to their anionic nature and high molecular weight. This limitation is particularly pronounced in lymphocytes, which pose additional barriers due to their smaller size and scant cytoplasm. Addressing this, we introduce an innovative lipid-conjugated polyethylenimine lipopolymer platform, engineered for delivery of therapeutic siRNAs into lymphocytes. This system utilizes the cationic nature of the polyethylenimine for forming stable complexes with anionic siRNAs, while the lipid component facilitates cellular entry of siRNA. The resulting lipopolymer/siRNA complexes are termed lipopolymer nanoparticles (LPNPs). We comprehensively profiled the efficacy of this platform in human peripheral blood mononuclear cells (PBMCs) as well as in vitro and in vivo models of acute lymphoblastic leukemia (ALL), emphasizing the inhibition of the oncogenic signal transducer and activator of transcription 5A (STAT5A) gene. The lipopolymers demonstrated high efficiency in delivering siRNA to ALL cell lines (RS4;11 and SUP-B15) and primary patient cells, effectively silencing the STAT5A gene. The resultant gene silencing induced apoptosis and significantly reduced colony formation in vitro. Furthermore, in vivo studies showed a significant decrease in tumor volumes without causing substantial toxicity. The lipopolymers did not induce the secretion of proinflammatory cytokines (IL-6, TNF-α, and INF-γ) in PBMCs from healthy volunteers, underscoring their immune safety profile. Our observations indicate that LPNP-based siRNA delivery systems offer a promising therapeutic approach for ALL in terms of both safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kyle Nickel
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | | | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Colombia Cancer Research Institute and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| |
Collapse
|
3
|
Zhao Y, Guo R, Cao X, Zhang Y, Sun R, Lu W, Zhao M. Role of chemokines in T-cell acute lymphoblastic Leukemia: From pathogenesis to therapeutic options. Int Immunopharmacol 2023; 121:110396. [PMID: 37295031 DOI: 10.1016/j.intimp.2023.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a highly heterogeneous and aggressive subtype of hematologic malignancy, with limited therapeutic options due to the complexity of its pathogenesis. Although high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation have improved outcomes for T-ALL patients, there remains an urgent need for novel treatments in cases of refractory or relapsed disease. Recent research has demonstrated the potential of targeted therapies aimed at specific molecular pathways to improve patient outcomes. Chemokine-related signals, both upstream and downstream, modulate the composition of distinct tumor microenvironments, thereby regulating a multitude of intricate cellular processes such as proliferation, migration, invasion and homing. Furthermore, the progress in research has made significant contributions to precision medicine by targeting chemokine-related pathways. This review article summarizes the crucial roles of chemokines and their receptors in T-ALL pathogenesis. Moreover, it explores the advantages and disadvantages of current and potential therapeutic options that target chemokine axes, including small molecule antagonists, monoclonal antibodies, and chimeric antigen receptor T-cells.
Collapse
Affiliation(s)
- YiFan Zhao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - RuiTing Guo
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - XinPing Cao
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin 300192, China
| | - Rui Sun
- School of Medicine, Nankai University, Tianjin 300192, China
| | - WenYi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China
| | - MingFeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin 300192, China.
| |
Collapse
|
4
|
Yang Y, Li J, Lei W, Wang H, Ni Y, Liu Y, Yan H, Tian Y, Wang Z, Yang Z, Yang S, Yang Y, Wang Q. CXCL12-CXCR4/CXCR7 Axis in Cancer: from Mechanisms to Clinical Applications. Int J Biol Sci 2023; 19:3341-3359. [PMID: 37497001 PMCID: PMC10367567 DOI: 10.7150/ijbs.82317] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/16/2023] [Indexed: 07/28/2023] Open
Abstract
Cancer is a multi-step disease caused by the accumulation of genetic mutations and/or epigenetic changes, and is the biggest challenge around the world. Cytokines, including chemokines, exhibit expression changes and disorders in all human cancers. These cytokine abnormalities can disrupt homeostasis and immune function, and make outstanding contributions to various stages of cancer development such as invasion, metastasis, and angiogenesis. Chemokines are a superfamily of small molecule chemoattractive cytokines that mediate a variety of cellular functions. Importantly, the interactions of chemokine members CXCL12 and its receptors CXCR4 and CXCR7 have a broad impact on tumor cell proliferation, survival, angiogenesis, metastasis, and tumor microenvironment, and thus participate in the onset and development of many cancers including leukemia, breast cancer, lung cancer, prostate cancer and multiple myeloma. Therefore, this review aims to summarize the latest research progress and future challenges regarding the role of CXCL12-CXCR4/CXCR7 signaling axis in cancer, and highlights the potential of CXCL12-CXCR4/CXCR7 as a biomarker or therapeutic target for cancer, providing essential strategies for the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Jiayan Li
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Wangrui Lei
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Haiying Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Yanqing Liu
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Huanle Yan
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yifan Tian
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Zhi Yang
- Department of Thoracic Surgery, Tangdu Hospital, The Airforce Medical University, Xi'an, China
| | - Shulin Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Faculty of Life Sciences and Medicine, Northwest University, Shenmu, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
5
|
Hui T, Yiling J, Guangqun C, Ran L, Hui L, Lan Y, Jie H, Su Q. Diallyl disulfide downregulating RhoGDI2 induces differentiation and inhibit invasion via the Rac1/Pak1/LIMK1 pathway in human leukemia HL-60 cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:1063-1077. [PMID: 36793247 DOI: 10.1002/tox.23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Leukemia is a type of disease in which hematopoietic stem cells proliferate clonally at the genetic level. We discovered previously by high-resolution mass spectrometry that diallyl disulfide (DADS), which is one of the effective ingredients of garlic, reduces the performance of RhoGDI2 from APL HL-60 cells. Although RhoGDI2 is oversubscribed in several cancer categories, the effect of RhoGDI2 in HL-60 cells has remained unexplained. We aimed to investigate the influence of RhoGDI2 on DADS-induced differentiation of HL-60 cells to elucidate the association among the effect of inhibition or over-expression of RhoGDI2 with HL-60 cell polarization, migration and invasion, which is important for establishing a novel generation of inducers to elicit leukemia cell polarization. Co-transfection with RhoGDI2-targeted miRNAs apparently decreases the malignant biological behavior of cells and upregulates cytopenias in DADS-treated HL-60 cell lines, which increases CD11b and decreases CD33 and mRNA levels of Rac1, PAK1 and LIMK1. Meanwhile, we generated HL-60 cell lines with high-expressing RhoGDI2. The proliferation, migration and invasion capacity of such cells were significantly increased by the treated with DADS, while the reduction capacity of the cells was decreased. There was a reduction in CD11b and an increase in CD33 production, as well as an increase in the mRNA levels of Rac1, PAK1 and LIMK1. It also confirmed that inhibition of RhoGDI2 attenuates the EMT cascade via the Rac1/Pak1/LIMK1 pathway, thereby inhibiting the malignant biological behavior of HL-60 cells. Thus, we considered that inhibition of RhoGDI2 expression might be a new therapeutic direction for the treatment of human promyelocytic leukemia. The anti-cancer property of DADS against HL-60 leukemia cells might be regulated by RhoGDI2 through the Rac1-Pak1-LIMK1 pathway, which provides new evidence for DADS as a clinical anti-cancer medicine.
Collapse
Affiliation(s)
- Tan Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Jiang Yiling
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| | - Chen Guangqun
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, Loudi Central Hospital, Loudi, China
| | - Liu Ran
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Pathology, The First Hospital of Changsha, Changsha, China
| | - Ling Hui
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Yi Lan
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - He Jie
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
| | - Qi Su
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, China
- Department of Oncology, First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
6
|
The Dual Function of RhoGDI2 in Immunity and Cancer. Int J Mol Sci 2023; 24:ijms24044015. [PMID: 36835422 PMCID: PMC9960019 DOI: 10.3390/ijms24044015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
RhoGDI2 is a guanine nucleotide dissociation inhibitor (GDI) specific for the Rho family of small GTPases. It is highly expressed in hematopoietic cells but is also present in a large array of other cell types. RhoGDI2 has been implicated in multiple human cancers and immunity regulation, where it can display a dual role. Despite its involvement in various biological processes, we still do not have a clear understanding of its mechanistic functions. This review sheds a light on the dual opposite role of RhoGDI2 in cancer, highlights its underappreciated role in immunity and proposes ways to explain its intricate regulatory functions.
Collapse
|
7
|
Luo J, Zheng H, Wang S, Li D, Ma W, Wang L, Crabbe MJC. ABL1 and Cofilin1 promote T-cell acute lymphoblastic leukemia cell migration. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1321-1332. [PMID: 34508625 DOI: 10.1093/abbs/gmab117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Accepted: 08/07/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion gene of ABL1 is closely related to tumor proliferation, invasion, and migration. It has been reported recently that ABL1 itself is required for T-cell acute lymphoblastic leukemia (T-ALL) cell migration induced by CXCL12. Further experiments revealed that ABL1 inhibitor Nilotinib inhibited leukemia cell migration induced by CXCL12, indicating the possible application of Nilotinib in T-ALL leukemia treatment. However, the interacting proteins of ABL1 and the specific mechanisms of their involvement in this process need further investigation. In the present study, ABL1 interacting proteins were characterized and their roles in the process of leukemia cell migration induced by CXCL12 were investigated. Co-immunoprecipitation in combination with mass spectrometry analysis identified 333 proteins that interact with ABL1, including Cofilin1. Gene ontology analysis revealed that many of them were enriched in the intracellular organelle or cytoplasm, including nucleic acid binding components, transfectors, or co-transfectors. Kyoto Encyclopedia of Genes and Genomes analysis showed that the top three enriched pathways were translation, glycan biosynthesis, and metabolism, together with human diseases. ABL1 and Cofilin1 were in the same complex. Cofilin1 binds the SH3 domain of ABL1 directly; however, ABL1 is not required for the phosphorylation of Cofilin1. Molecular docking analysis shows that ABL1 interacts with Cofilin1 mainly through hydrogen bonds and ionic interaction between amino acid residues. The mobility of leukemic cells was significantly decreased by Cofilin1 siRNA. These results demonstrate that Cofilin1 is a novel ABL1 binding partner. Furthermore, Cofilin1 participates in the migration of leukemia cells induced by CXCL12. These data indicate that ABL1 and Cofilin1 are possible targets for T-ALL treatment.
Collapse
Affiliation(s)
- Jixian Luo
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Huiguang Zheng
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Sen Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Dingyun Li
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Wenli Ma
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - Lan Wang
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
| | - M James C Crabbe
- School of Life Sciences, Shanxi University, Taiyuan 030006, China
- Wolfson College, University of Oxford, Oxford, Oxfordshire OX2 6UD, UK
- Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, University Square, Luton LU1 3JU, UK
| |
Collapse
|
8
|
Hong Z, Wei Z, Xie T, Fu L, Sun J, Zhou F, Jamal M, Zhang Q, Shao L. Targeting chemokines for acute lymphoblastic leukemia therapy. J Hematol Oncol 2021; 14:48. [PMID: 33743810 PMCID: PMC7981899 DOI: 10.1186/s13045-021-01060-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by the malignant clonal expansion of lymphoid hematopoietic precursors. It is regulated by various signaling molecules such as cytokines and adhesion molecules in its microenvironment. Chemokines are chemotactic cytokines that regulate migration, positioning and interactions of cells. Many chemokine axes such as CXCL12/CXCR4 and CCL25/CCR9 have been proved to play important roles in leukemia microenvironment and further affect ALL outcomes. In this review, we summarize the chemokines that are involved in ALL progression and elaborate on their roles and mechanisms in leukemia cell proliferation, infiltration, drug resistance and disease relapse. We also discuss the potential of targeting chemokine axes for ALL treatments, since many related inhibitors have shown promising efficacy in preclinical trials, and some of them have entered clinical trials.
Collapse
Affiliation(s)
- Zixi Hong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zimeng Wei
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Lin Fu
- The First Clinical School of Wuhan University, Wuhan, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|