1
|
Kwas K, Szubert M, Wilczyński JR. Latest Update on lncRNA in Epithelial Ovarian Cancer-A Scoping Review. Cells 2025; 14:555. [PMID: 40214508 PMCID: PMC11988607 DOI: 10.3390/cells14070555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules exceeding 200 nucleotides that do not encode proteins yet play critical roles in regulating gene expression at multiple levels, such as chromatin modification and transcription. These molecules are significantly engaged in cancer progression, development, metastasis, and chemoresistance. However, the function of lncRNAs in epithelial ovarian cancer (EOC) has not yet been thoroughly studied. EOC remains challenging due to its complex molecular pathogenesis, characterized by genetic and epigenetic alterations. Emerging evidence suggests that lncRNAs, such as XIST, H19, NEAT1, and MALAT1, are involved in EOC by modulating gene expression and signaling pathways, influencing processes like cell proliferation, invasion, migration, and chemoresistance. Despite extensive research, the precise mechanism of acting of lncRNAs in EOC pathogenesis and treatment resistance still needs to be fully understood, highlighting the need for further studies. This review aims to provide an updated overview of the current understanding of lncRNAs in EOC, emphasizing their potential as biomarkers and therapeutic targets. We point out the gaps in the knowledge regarding lncRNAs' influence on epithelial ovarian cancer (EOC), deliberating on new possible research areas.
Collapse
Affiliation(s)
- Katarzyna Kwas
- Department of Surgical and Oncologic Gynaecology, 1st Department of Gynaecology and Obstetrics, Medical University of Lodz, 90-136 Łódź, Poland; (M.S.); (J.R.W.)
| | | | | |
Collapse
|
2
|
Yang X, Yang Z, Shuai Z, Zhang M, Xu SQ, Shuai ZW. Expression and significance of lncRNAs derived from PBMC in rheumatoid arthritis. Front Immunol 2025; 16:1515665. [PMID: 40181954 PMCID: PMC11965121 DOI: 10.3389/fimmu.2025.1515665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are gaining recognition for their critical involvement in diverse autoimmune disorders. Nevertheless, reseach investigating the role of lncRNAs in rheumatoid arthritis (RA) is relatively scarce. Methods Comprehensive transcriptome sequencing was executed to acquire a lncRNA expression pattern in peripheral blood mononuclear cells (PBMC) of RA. Then, we confirmed the sequencing data by real-time quantitative polymerase chain reaction (RT-qPCR). Results The findings showed decreased levels of LINC00494, TSP0AP1-AS1, MCM3AP-AS1 and LINC01588, increased levels of OIP5-AS1, in PBMC of RA compared to controls. ROC analysis for the five dysregulated lncRNAs demonstrated an area under curve (AUC) extending from 0.654 to 0.915, and their combination had high utility for accurate RA diagnosis (AUC = 0.920). There existed a negative relation between RF and LINC00494 expression (P=0.027), positive relation between anti-CCP and MCM3AP-AS1 (P=0.024), and negative relation between CRP and LINC01588 expression (P=0.020). Conclusions Our study indicated that LINC00494, TSP0AP1-AS1, MCM3AP-AS1, LINC01588 and OIP5-AS1 in PBMC may be the biomarkers for RA.
Collapse
Affiliation(s)
- Xiaoke Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhongling Yang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziqiang Shuai
- Department of Sports Injury and Arthroscopic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingming Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng-qian Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zong Wen Shuai
- Department of Rheumatology and Immunology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Song XQ, Chen BB, Jin YM, Wang CY. DNMT1-mediated epigenetic suppression of FBXO32 expression promoting cyclin dependent kinase 9 (CDK9) survival and esophageal cancer cell growth. Cell Cycle 2024; 23:262-278. [PMID: 38597826 PMCID: PMC11057636 DOI: 10.1080/15384101.2024.2309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 04/11/2024] Open
Abstract
Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.
Collapse
Affiliation(s)
- Xian-Qiang Song
- Department of Radiotherapy, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Bin-Bin Chen
- Departments of Laboratory Medicine, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Yong-Mei Jin
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Chang-Yong Wang
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| |
Collapse
|
4
|
Chen C, Wang N, Huang T, Cheng G, Hu Y, Wang B, Zhang Y, Wang C. Chloroprocaine antagonizes progression of breast cancer by regulating LINC00494/miR-3619-5p/MED19 axis. J Biochem Mol Toxicol 2024; 38:e23524. [PMID: 37650745 DOI: 10.1002/jbt.23524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer, as the most prevalent female malignancy, leads the cancer-related death in women worldwide. Local anesthetic chloroprocaine exhibits antitumor potential, but its specific functions and underlying molecular mechanisms in breast cancer remain unclear. Here, we demonstrated chloroprocaine significantly inhibited proliferation, invasion and induced apoptosis of breast cancer cells in vitro. Tumor growth and pulmonary metastasis were also suppressed in BABL/c nude mice model with chloroprocaine treatment. LINC00494 was identified as one of the most downregulated long noncoding RNAs in chloroprocaine-treated breast cancer cells by high-throughput sequencing. Futhermore, high level of LINC00494 was positively associated with poor outcome of breast cancer patients. LINC00494 acted as a "miRNAs sponge" to compete with MED19 for the biding of miR-3619-5p, led to the upregulation of MED19. LINC00494/miR-3619-5p/MED19 axis participated in chloroprocaine-mediated inhibition of proliferation, invasion and promotion of apoptosis of breast cancer cells. Consequently, our finding suggested local anesthetic chloroprocaine attenuated breast cancer aggressiveness through LINC00494-mediated signaling pathway, which detailly revealed the clinical value of chloroprocaine during breast cancer treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Ning Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Tingting Huang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Gao Cheng
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuexia Hu
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Bingjie Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, Anhui, China
| | - Chunhui Wang
- Department of Anesthesiology, The First Affifiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
5
|
Androgen-Responsive Oncogenic lncRNA RP11-1023L17.1 Enhances c-Myc Protein Stability in Prostate Cancer. Int J Mol Sci 2022; 23:ijms232012219. [PMID: 36293081 PMCID: PMC9603324 DOI: 10.3390/ijms232012219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been found as novel participants in the pathophysiology of prostate cancer (PCa), which is predominantly regulated by androgen and its receptor. The biological function of androgen-responsive lncRNAs remains poorly understood. Here, we identified that lncRNA RP11-1023L17.1, which is highly expressed in PCa. RP11-1023L17.1 expression, can be directly repressed by the androgen receptor in PCa cells. RP11-1023L17.1 depletion inhibited the proliferation, migration, and cell cycle progression, and promoted the apoptosis of PCa cells, indicating that RP11-1023L17.1 acts as an oncogene in PCa cells. Microarray results revealed that RP11-1023L17.1 depletion downregulated the c-Myc transcription signature in PCa cells. RP11-1023L17.1 depletion-induced cellular phenotypes can be overcome by ectopically overexpressed c-Myc. Mechanistically, RP11-1023L17.1 represses FBXO32 mRNA expression, thereby enhancing c-Myc protein stability by blocking FBXO32-mediated c-Myc degradation. Our findings reveal the previously unrecognized roles of RP11-1023L17.1 in c-Myc-dependent PCa tumorigenesis.
Collapse
|
6
|
Xia L, Chen J, Huang M, Mei J, Lin M. The functions of long noncoding RNAs on regulation of F-box proteins in tumorigenesis and progression. Front Oncol 2022; 12:963617. [PMID: 35928868 PMCID: PMC9343830 DOI: 10.3389/fonc.2022.963617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Accumulated evidence has revealed that F-box protein, a subunit of SCF E3 ubiquitin ligase complexes, participates in carcinogenesis and tumor progression via targeting its substrates for ubiquitination and degradation. F-box proteins could be regulated by cellular signaling pathways and noncoding RNAs in tumorigenesis. Long noncoding RNA (lncRNA), one type of noncoding RNAs, has been identified to modulate the expression of F-box proteins and contribute to oncogenesis. In this review, we summarize the role and mechanisms of multiple lncRNAs in regulating F-box proteins in tumorigenesis, including lncRNAs SLC7A11-AS1, MT1JP, TUG1, FER1L4, TTN-AS1, CASC2, MALAT1, TINCR, PCGEM1, linc01436, linc00494, GATA6-AS1, and ODIR1. Moreover, we discuss that targeting these lncRNAs could be helpful for treating cancer via modulating F-box protein expression. We hope our review can stimulate the research on exploration of molecular insight into how F-box proteins are governed in carcinogenesis. Therefore, modulation of lncRNAs is a potential therapeutic strategy for cancer therapy via regulation of F-box proteins.
Collapse
|
7
|
Anti-inflammatory mouthwashes for the prevention of oral mucositis in cancer therapy: an integrative review and meta-analysis. Support Care Cancer 2022; 30:7205-7218. [PMID: 35486227 DOI: 10.1007/s00520-022-07068-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/13/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Mucositis is severely painful and often reported as one of the most distressing adverse effects of cancer therapy; it is a significant threat to quality of life as well as life itself. Anti-inflammatory agents may modulate physiologic mechanisms that perpetuate mucositis and be useful in prevention efforts. Because systemic anti-inflammatory agents are not appropriate for many patients, locally acting agents (mouthwashes) may be more feasible for use. This review and meta-analysis evaluates the role that anti-inflammatory mouthwashes have in preventing or reducing oral mucositis associated with chemotherapy and radiation therapy. METHODS A systematic literature review was conducted to identify studies evaluating the efficacy of anti-inflammatory mouthwashes to prevent therapy-associated mucositis. Meta-analysis was conducted to determine efficacy in preventing any mucositis and dose-limiting mucositis. RESULTS Eight peer-reviewed publications were identified; corticosteroid and nonsteroidal anti-inflammatory mouthwashes are effective in reducing overall incidence of mucositis and are associated with lower severity of mucositis. Meta-analysis reveals significant reduction in symptomatic mucositis incidence (OR 6.00, 95% CI 4.39-8.20, p < 0.0001) and reduction of dose-limiting mucositis (OR 2.12, 95% CI 1.07-4.28, p = 0.032). CONCLUSION Mouthwashes containing anti-inflammatory agents are a potential effective means to prevent or reduce mucositis associated with cancer therapy. There are limited adverse effects from these agents, and adherence is high, indicating safety and feasibility of use. Anti-inflammatory mouthwashes should be considered for supportive care in persons at risk for mucositis and must be further evaluated to investigate efficacy across multiple chemotherapy agents, adverse effects, and impacts on symptoms, pain, and quality of life.
Collapse
|
8
|
LINC00035 Transcriptional Regulation of SLC16A3 via CEBPB Affects Glycolysis and Cell Apoptosis in Ovarian Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5802082. [PMID: 34671407 PMCID: PMC8523266 DOI: 10.1155/2021/5802082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Objective Ovarian cancer (OC) represents the most lethal gynecologic malignancy globally. Over the decades, lncRNAs have been considered as study focuses due to their genome-wide expression through multiple mechanisms in which regulation of target gene transcription through interaction with transcription factors or epigenetic proteins is proven. In the present work, we focus on the functional role of LINC00035 in OC and its regulation mechanism on gene expression. Methods We collected OC tissues and adjacent tumor-free tissues surgically resected from 67 OC patients. Cultured human OC cell lines SKOV3 and A2780 were assayed for their viability, migration, invasion, apoptosis in vitro using CCK-8 assays, transwell assays, and flow cytometric analysis. OC cell tumorigenesis in vivo was evaluated by mouse xenograft experiments. Glycolysis was evaluated by glucose uptake, lactate release, and ATP production assays. Luciferase activity assay, RNA immunoprecipitation (RIP), and RNA pull-down were performed to confirm the interactions among LINC00035, CEBPB, and SLC16A3. Results LINC00035 was upregulated in OC tissues. LINC00035 knockdown was shown to repress SKOV3 and A2780 cell viability, migration, invasion, induce their apoptosis, and reduce glucose uptake, lactate release, and ATP production. LINC00035 could recruit CEBPB into the SLC16A3 promoter region, thus increasing the SLC16A3 transcription. SLC16A3 was upregulated in OC tissues. SLC16A3 knockdown exerted similar effects on SKOV3 and A2780 cells as LINC00035 knockdown. Rescue experiments found SLC16A3 overexpression resisting to LINC00035 knockdown on SKOV3 and A2780 cell viability, migration, invasion, apoptosis, glucose uptake, lactate release, and ATP production. Results also showed LINC00035 knockdown could inhibit OC cell tumorigenesis in vivo. Conclusion The study reveals that LINC00035 promotes OC progression by regulating glycolysis and cell apoptosis through CEBPB-mediated transcriptional promotion of SLC16A3.
Collapse
|