1
|
Moshrefi A, Hosseini SM. In vitro and in vivo evaluation of anti-tumorigenesis potential of nano silver for gastric cancer cells. J Mol Histol 2024; 56:14. [PMID: 39611988 DOI: 10.1007/s10735-024-10315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/21/2024] [Indexed: 11/30/2024]
Abstract
Silver nanoparticles (AgNP) exhibit significant cytotoxicity against MKN45 cells (IC50: 105.5 µg/mL). In vivo, AgNP at 150 mg/kg induces necrosis, reduces proliferation, and alters gene expression, presenting a promising gastric cancer treatment strategy. Gastric cancer is the second leading cause of death from cancer worldwide. In this study, the anticancer effect of silver nanoparticles (AgNP) was evaluated in both In vitro and In vivo. First, an MTT assay was employed to estimate the cytotoxicity of AgNP. Next, the obtained IC50s were used as the main doses that were administrated. Regarding In Vitro, MKN45 cells were applied to induce tumor, and AgNP was administrated to mice at doses of 75 and 150 mg/kg for 28 days twice a week in treatment groups post-induction of cancer. After 28 days, the expressions of the BAX, BCL2, and CXCR1 genes were evaluated. An immunohistochemical examination of CD34 and Ki67 markers and tissue absorption of silver nanoparticles were also performed. Our MTT assay results showed that AgNP's IC50 after 8, 24, and 48 h were 105.5, 70.8, and 22.4 µg/mL, respectively. In addition, the mean survival probability in the treatment groups was more than 25 days. It seemed that the effectiveness of the concentration of 150 mg/kg of silver nanoparticles had caused a significant amount of necrosis in the tumor cells. In addition, the proliferation rate was decreased significantly in the 150 mg/kg group, and the expression of CD34 and Ki67 markers was reduced significantly. However, the expression of BAX and BCL2 genes was increased in the treatment groups. So, as it was shown in this research in both In vitro and In vivo aspects, it seems that the administration of silver nanoparticles can represent a promising strategy in the treatment of gastric cancer.
Collapse
|
2
|
Varghese S, Rao S, Khattak A, Zamir F, Chaari A. Physical Exercise and the Gut Microbiome: A Bidirectional Relationship Influencing Health and Performance. Nutrients 2024; 16:3663. [PMID: 39519496 PMCID: PMC11547208 DOI: 10.3390/nu16213663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The human gut microbiome is a complex ecosystem of microorganisms that can influence our health and exercise habits. On the other hand, physical exercise can also impact our microbiome, affecting our health. Our narrative review examines the bidirectional relationship between physical activity and the gut microbiome, as well as the potential for targeted probiotic regimens to enhance sports performance. Methods: We conducted a comprehensive literature review to select articles published up till January 2024 on the topics of physical exercise, sports, probiotics, and gut microbiota from major scientific databases, incorporating over 100 studies. Results: We found that the impact of physical activity on the gut microbiome varies with the type and intensity of exercise. Moderate exercise promotes a healthy immune system, while high-intensity exercise for a long duration can cause a leaky gut and consequent systemic inflammation, which may disrupt the microbial balance. Combining aerobic and resistance training significantly affects bacterial diversity, linked to a lower prevalence of chronic metabolic disorders. Furthermore, exercise enhances gut microbiome diversity, increases SCFA production, improves nutrient utilization, and modulates neural and hormonal pathways, improving gut barrier integrity. Our findings also showed probiotic supplementation is associated with decreased inflammation, enhanced sports performance, and fewer gastrointestinal disturbances, suggesting that the relationship between the gut microbiome and physical activity is mutually influential. Conclusions: The bidirectional relationship between physical activity and the gut microbiome is exemplified by how exercise can promote beneficial bacteria while a healthy gut microbiome can potentially enhance exercise ability through various mechanisms. These findings underscore the importance of adding potential tailored exercise regimens and probiotic supplementation that consider individual microbiome profiles into exercise programs.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Department of Biochemistry, Premedical Division, Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (S.V.); (S.R.); (A.K.); (F.Z.)
| |
Collapse
|
3
|
Bechtel MD, Michel C, Srinivasan P, Chalise P, Parker WP, Mirza M, Thrasher B, Gibbs HD, DiGiovanni J, Hamilton-Reeves J. Impact of Weight Management on Obesity-Driven Biomarkers of Prostate Cancer Progression. J Urol 2024; 211:552-562. [PMID: 38299570 PMCID: PMC11887940 DOI: 10.1097/ju.0000000000003849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Excess body and visceral fat increase the risk of death from prostate cancer (PCa). This phase II study aimed to test whether weight reduction by > 5% total body weight counteracts obesity-driven PCa biomarkers. MATERIALS AND METHODS Forty men scheduled for prostatectomy were randomized into intervention (n = 20) or control (n = 20) arms. Intervention participants followed a weight management program for 4 to 16 weeks before and 6 months after surgery. Control participants received standardized educational materials. All participants attended visits at baseline, 1 week before surgery, and 6 months after surgery. Circulating immune cells, cytokines, and chemokines were evaluated. Weight loss, body composition/distribution, quality of life, and nutrition literacy were assessed. Prostate tissue samples obtained from biopsy and surgery were analyzed. RESULTS From baseline to surgery (mean = 5 weeks), the intervention group achieved 5.5% of weight loss (95% CI, 4%-7%). Compared to the control, the intervention also reduced insulin, total cholesterol, LDL cholesterol, leptin, leptin:adiponectin ratio, and visceral adipose tissue. The intervention group had reduced c-peptide, plasminogen-activator-inhibitor-1, and T cell count from baseline to surgery. Myeloid-derived suppressor cells were not statistically different by group. Intervention group anthropometrics improved, including visceral and overall fat loss. No prostate tissue markers changed significantly. Quality of life measures of general and emotional health improved in the intervention group. The intervention group maintained or kept losing to a net loss of 11% initial body weight (95% CI, 8%-14%) at the study end. CONCLUSIONS Our study demonstrated improvements in body composition, PCa biomarkers, and quality of life with a weight management intervention.
Collapse
Affiliation(s)
- Misty D. Bechtel
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Carrie Michel
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - William P. Parker
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Moben Mirza
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Brantley Thrasher
- Department of Urology, University of Kansas Medical Center, Kansas City, Kansas
| | - Heather D. Gibbs
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, Kansas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, Texas
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
4
|
Gregg JR, Magill R, Fang AM, Chapin BF, Davis JW, Adibi M, Chéry L, Papadopoulos J, Pettaway C, Pisters L, Ward JF, Hahn AW, Daniel CR, Bhaskaran J, Zhu K, Guerrero M, Zhang M, Troncoso P. The association of body mass index with tumor aggression among men undergoing radical prostatectomy. Urol Oncol 2024; 42:116.e1-116.e7. [PMID: 38262868 DOI: 10.1016/j.urolonc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
OBJECTIVES To evaluate the association of preoperative body mass index (BMI) on adverse pathology in peripheral (PZ) and transition zone (TZ) tumors at time of prostatectomy for localized prostate cancer. METHODS Clinical and pathologic characteristics were obtained from up to 100 consecutive prostatectomy patients from 10 prostate surgeons. BMI groups included normal (18.5-24.9), overweight (25-29.9) and obese (> 29.9). "Aggressive" pathology was defined as the presence of Grade Group (GG) 3 or higher and/or pT3a or higher. Pathologic characteristics were evaluated for association with BMI using univariate analyses. Our primary outcome was the association of BMI with adverse pathology, which was assessed using logistic regression accounting for patient age. We hypothesized that obese BMI would be associated with aggressive TZ tumor. RESULTS Among 923 patients, 140 (15%) were classified as "normal" BMI, 413 (45%) were "overweight", and 370 (40%) were "obese." 474 patients (51%) had aggressive PZ tumors while 102 (11%) had aggressive TZ tumors. "Obese" BMI was not associated with aggressive TZ tumor compared to normal weight. Increasing BMI group was associated with overall increased risk of aggressive PZ tumor (HR 1.56 [95CI 1.04-2.34]; P = 0.03). Among patients with GG1 or GG2, increasing BMI was associated with presence of pT3a or higher TZ tumor (P = 0.03). CONCLUSIONS Increased BMI is associated with adverse pathology in PZ tumors. TZ adverse pathology risk may be increased among obese men with GG1 or GG2 disease, which has implications for future studies assessing behavioral change among men whose tumors are actively monitored.
Collapse
Affiliation(s)
- Justin R Gregg
- MD Anderson Cancer Center, University of Texas, Houston, TX.
| | - Resa Magill
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Andrew M Fang
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Brian F Chapin
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - John W Davis
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Mehrad Adibi
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Lisly Chéry
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | | | | | - Louis Pisters
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - John F Ward
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Andrew W Hahn
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | | | | | - Keyi Zhu
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | | | - Miao Zhang
- MD Anderson Cancer Center, University of Texas, Houston, TX
| | | |
Collapse
|
5
|
Dovey Z, Horowitz A, Waingankar N. The influence of lifestyle changes (diet, exercise and stress reduction) on prostate cancer tumour biology and patient outcomes: A systematic review. BJUI COMPASS 2023; 4:385-416. [PMID: 37334023 PMCID: PMC10268595 DOI: 10.1002/bco2.237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 06/20/2023] Open
Abstract
Background The mostly indolent natural history of prostate cancer (PCa) provides an opportunity for men to explore the benefits of lifestyle interventions. Current evidence suggests appropriate changes in lifestyle including diet, physical activity (PA) and stress reduction with or without dietary supplements may improve both disease outcomes and patient's mental health. Objective This article aims to review the current evidence on the benefits of all lifestyle programmes for PCa patients including those aimed at reducing obesity and stress, explore their affect on tumour biology and highlight any biomarkers that have clinical utility. Evidence acquisition Evidence was obtained from PubMed and Web of Science using keywords for each section on the affects of lifestyle interventions on (a) mental health, (b) disease outcomes and (c) biomarkers in PCa patients. PRISMA guidelines were used to gather the evidence for these three sections (15, 44 and 16 publications, respectively). Evidence synthesis For lifestyle studies focused on mental health, 10/15 demonstrated a positive influence, although for those programmes focused on PA it was 7/8. Similarly for oncological outcomes, 26/44 studies demonstrated a positive influence, although when PA was included or the primary focus, it was 11/13. Complete blood count (CBC)-derived inflammatory biomarkers show promise, as do inflammatory cytokines; however, a deeper understanding of their molecular biology in relation to PCa oncogenesis is required (16 studies reviewed). Conclusions Making PCa-specific recommendations on lifestyle interventions is difficult on the current evidence. Nevertheless, notwithstanding the heterogeneity of patient populations and interventions, the evidence that dietary changes and PA may improve both mental health and oncological outcomes is compelling, especially for moderate to vigorous PA. The results for dietary supplements are inconsistent, and although some biomarkers show promise, significantly more research is required before they have clinical utility.
Collapse
Affiliation(s)
- Zach Dovey
- Mount Sinai Health System, Department of UrologyIcahn Medical SchoolNew YorkNew YorkUSA
| | - Amir Horowitz
- Icahn School of MedicineThe Mount Sinai HospitalNew YorkNew YorkUSA
| | | |
Collapse
|
6
|
Deng R, Wang M, Song Y, Shi Y. A Bibliometric Analysis on the Research Trend of Exercise and the Gut Microbiome. Microorganisms 2023; 11:microorganisms11040903. [PMID: 37110325 PMCID: PMC10141121 DOI: 10.3390/microorganisms11040903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
This article aims to provide an overview of research hotspots and trends in exercise and the gut microbiome, a field which has recently gained increasing attention. The relevant publications on exercise and the gut microbiome were identified from the Web of Science Core Collection database. The publication types were limited to articles and reviews. VOSviewer 1.6.18 (Centre for Science and Technology Studies, Leiden University, Leiden, the Netherlands) and the R package "bibliometrix" (R Foundation: Vienna, Austria) were used to conduct a bibliometric analysis. A total of 327 eligible publications were eventually identified, including 245 original articles and 82 reviews. A time trend analysis showed that the number of publications rapidly increased after 2014. The leading countries/regions in this field were the USA, China, and Europe. Most of the active institutions were from Europe and the USA. Keyword analysis showed that the relationship between disease, the gut microbiome, and exercise occurs throughout the development of this field of research. The interactions between the gut microbiota, exercise, status of the host's internal environment, and probiotics, are important facets as well. The research topic evolution presents a trend of multidisciplinary and multi-perspective comprehensive analysis. Exercise might become an effective intervention for disease treatment by regulating the gut microbiome. The innovation of exercise-centered lifestyle intervention therapy may become a significant trend in the future.
Collapse
Affiliation(s)
- Ruiyi Deng
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Mopei Wang
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yahan Song
- Library, Peking University Third Hospital, Beijing 100191, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
7
|
Artificial Intelligence for Clinical Diagnosis and Treatment of Prostate Cancer. Cancers (Basel) 2022; 14:cancers14225595. [PMID: 36428686 PMCID: PMC9688370 DOI: 10.3390/cancers14225595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
As medical science and technology progress towards the era of "big data", a multi-dimensional dataset pertaining to medical diagnosis and treatment is becoming accessible for mathematical modelling. However, these datasets are frequently inconsistent, noisy, and often characterized by a significant degree of redundancy. Thus, extensive data processing is widely advised to clean the dataset before feeding it into the mathematical model. In this context, Artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL) algorithms based on artificial neural networks (ANNs) and their types, are being used to produce a precise and cross-sectional illustration of clinical data. For prostate cancer patients, datasets derived from the prostate-specific antigen (PSA), MRI-guided biopsies, genetic biomarkers, and the Gleason grading are primarily used for diagnosis, risk stratification, and patient monitoring. However, recording diagnoses and further stratifying risks based on such diagnostic data frequently involves much subjectivity. Thus, implementing an AI algorithm on a PC's diagnostic data can reduce the subjectivity of the process and assist in decision making. In addition, AI is used to cut down the processing time and help with early detection, which provides a superior outcome in critical cases of prostate cancer. Furthermore, this also facilitates offering the service at a lower cost by reducing the amount of human labor. Herein, the prime objective of this review is to provide a deep analysis encompassing the existing AI algorithms that are being deployed in the field of prostate cancer (PC) for diagnosis and treatment. Based on the available literature, AI-powered technology has the potential for extensive growth and penetration in PC diagnosis and treatment to ease and expedite the existing medical process.
Collapse
|
8
|
Expression signature, prognosis value and immune characteristics of cathepsin F in non-small cell lung cancer identified by bioinformatics assessment. BMC Pulm Med 2021; 21:420. [PMID: 34923982 PMCID: PMC8686609 DOI: 10.1186/s12890-021-01796-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background In recent years, immunotherapies and targeted therapies contribute to population-level improvement in NSCLC cancer-specific survival, however, the two novel therapeutic options have mainly benefit patients containing mutated driven genes. Thus, to explore other potential genes related with immunity or targeted therapies may provide novel options to improve survival of lung cancer patients without mutated driven genes. CTSF is unique in human cysteine proteinases. Presently, CTSF has been detected in several cell lines of lung cancer, but its role in progression and prognosis of lung cancer remains unclear. Methods CTSF expression and clinical datasets of lung cancer patients were obtained from GTEx, TIMER, CCLE, THPA, and TCGA, respectively. Association of CTSF expression with clinicopathological parameters and prognosis of lung cancer patients was analyzed using UALCAN and Kaplan–Meier Plotter, respectively. LinkedOmics were used to analyze correlation between CTSF and CTSF co-expressed genes. Protein–protein interaction and gene–gene interaction were analyzed using STRING and GeneMANIA, respectively. Association of CTSF with molecular markers of immune cells and immunomodulators was analyzed with Immunedeconv and TISIDB, respectively. Results CTSF expression was currently only available for patients with NSCLC. Compared to normal tissues, CTSF was downregulated in NSCLC samples and high expressed CTSF was correlated with favorable prognosis of NSCLC. Additionally, CTSF expression was correlated with that of immune cell molecular markers and immunomodulators both in LUAD and LUSC. Noticeably, high expression of CTSF-related CTLA-4 was found to be associated with better OS of LUAD patients. Increased expression of CTSF-related LAG-3 was related with poor prognosis of LUAD patients while there was no association between CTSF-related PD-1/PD-L1 and prognosis of LUAD patients. Moreover, increased expression of CTSF-related CD27 was related with poor prognosis of LUAD patients while favorable prognosis of LUSC patients. Conclusions CTSF might play an anti-tumor effect via regulating immune response of NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01796-w.
Collapse
|
9
|
Wilson RL, Taaffe DR, Newton RU, Hart NH, Lyons-Wall P, Galvão DA. Obesity and prostate cancer: A narrative review. Crit Rev Oncol Hematol 2021; 169:103543. [PMID: 34808374 DOI: 10.1016/j.critrevonc.2021.103543] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Overweight and obese men with prostate cancer are at an increased risk of disease recurrence, exacerbated treatment-related adverse effects, development of obesity-related comorbidities, earlier progression and development of metastatic disease, and higher all-cause and prostate cancer-specific mortality. The physiological mechanisms associating obesity with poor prostate cancer outcomes remain largely unknown; however, an increased inflammatory environment and metabolic irregularities associated with excess fat mass are commonly postulated. Although research is limited, fat loss strategies using exercise and nutrition programmes may slow down prostate cancer progression and improve a patient's prognosis. This review is an overview of: 1) the association between obesity and poor prostate cancer prognosis; 2) potential physiological mechanisms linking obesity and prostate cancer progression; 3) the effect of obesity on treatments for prostate cancer; and 4) the potential for weight loss strategies to improve outcomes in patients with prostate cancer.
Collapse
Affiliation(s)
- Rebekah L Wilson
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, United States; Department of Medicine, Harvard Medical School, Boston, MA, 02215, United States.
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, Perth, WA, 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, WA, 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia
| | - Nicolas H Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, WA, 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia; Institute for Health Research, University of Notre Dame Australia, Perth, WA, 6160, Australia; College of Nursing and Health Science, Flinders University, Adelaide, SA, 5042, Australia
| | - Philippa Lyons-Wall
- Exercise Medicine Research Institute, Edith Cowan University, Perth, WA, 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, Perth, WA, 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Perth, WA, 6027, Australia
| |
Collapse
|
10
|
Van Booven DJ, Kuchakulla M, Pai R, Frech FS, Ramasahayam R, Reddy P, Parmar M, Ramasamy R, Arora H. A Systematic Review of Artificial Intelligence in Prostate Cancer. Res Rep Urol 2021; 13:31-39. [PMID: 33520879 PMCID: PMC7837533 DOI: 10.2147/rru.s268596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The diagnosis and management of prostate cancer involves the interpretation of data from multiple modalities to aid in decision making. Tools like PSA levels, MRI guided biopsies, genomic biomarkers, and Gleason grading are used to diagnose, risk stratify, and then monitor patients during respective follow-ups. Nevertheless, diagnosis tracking and subsequent risk stratification often lend itself to significant subjectivity. Artificial intelligence (AI) can allow clinicians to recognize difficult relationships and manage enormous data sets, which is a task that is both extraordinarily difficult and time consuming for humans. By using AI algorithms and reducing the level of subjectivity, it is possible to use fewer resources while improving the overall efficiency and accuracy in prostate cancer diagnosis and management. Thus, this systematic review focuses on analyzing advancements in AI-based artificial neural networks (ANN) and their current role in prostate cancer diagnosis and management.
Collapse
Affiliation(s)
- Derek J Van Booven
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raghav Pai
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Fabio S Frech
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Reshna Ramasahayam
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Pritika Reddy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Madhumita Parmar
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.,The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.,The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|