1
|
Lahouty M, Soleymanzadeh A, Kazemi S, Saadati-Maleki H, Masoudi S, Ghasemi A, Kazemi T, Mehranfar S, Fadaee M. Cell-based immunotherapy in oesophageal cancer. J Drug Target 2025:1-11. [PMID: 40063049 DOI: 10.1080/1061186x.2025.2477077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/18/2025]
Abstract
Oesophageal cancer (EC) is among the most common illnesses globally, and its prognosis is unfavourable. Surgery, radiotherapy and chemotherapy are the primary therapy options for EC. Despite the occasional efficacy of these traditional treatment modalities, individuals with EC remain at a significant risk for local recurrence and metastasis. Consequently, innovative and efficacious medicines are required. In recent decades, clinical practice has effectively implemented cell therapy, which includes both stem cell and non-stem cell-based approaches, as an innovative tumour treatment, offering renewed hope to patients with oesophageal squamous cell carcinoma (ESCC). This paper examines the theoretical framework and contemporary advancements in cell treatment for individuals with EC. We further described current clinical studies and summarised essential data related to survival and safety assessments.
Collapse
Affiliation(s)
- Masoud Lahouty
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sama Kazemi
- Faculty of Medicine, Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Haniyeh Saadati-Maleki
- Faculty of Medicine, Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sanaz Masoudi
- Faculty of Medicine, Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arash Ghasemi
- Faculty of Medicine, Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Urmia University of Medical Sciences, Urmia, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Lin PI, Lee YC, Chen IH, Chung HH. Pharmacological Modulation of Mutant TP53 with Oncotargets Against Esophageal Cancer and Therapy Resistance. Biomedicines 2025; 13:450. [PMID: 40002862 PMCID: PMC11852872 DOI: 10.3390/biomedicines13020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The prevalence and deaths from esophageal cancer (EC) have recently increased. Although therapeutic strategies depend on the EC stage and recurrence, such as surgical intervention, chemotherapy, radiation therapy, chemoradiation therapy, targeted therapy, and immunotherapy, a more effective and novel treatment for EC is still required. This review briefly describes and summarizes some insightful oncotargets involved in the metabolic modulation of EC, including (1) cancer stem cells (CSCs) for EC progression, poor prognosis, tumor recurrence, and therapy resistance; (2) retinoic acid receptors (RARs) for esophageal carcinogenesis and regeneration; (3) phosphofructokinase (PFK) for EC-reprogrammed glycolysis; (4) lactate dehydrogenase (LDH) as an EC peripheral blood biomarker; and (5) hypoxia-inducible factor-1 alpha (HIF-1α) for the tumor microenvironment under hypoxic conditions. Moreover, the aforementioned oncotargets can be modulated by mutant TP53 and have their own features in the carcinogenesis, differentiation, proliferation, and metastasis of EC. Thus, the clarification of pharmacological mechanisms regarding the interaction between mutant TP53 and the abovementioned oncotargets could provide precise and perspective opinions for minimizing prediction errors, reducing therapy resistance, and developing novel drugs against EC.
Collapse
Affiliation(s)
- Pei-I Lin
- Department of Nursing, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833401, Taiwan;
| | - Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 110301, Taiwan;
| | - I-Hung Chen
- Division of Urology, Department of Surgery, National Cheng Kung University Hospital Douliu Branch, Yunlin County 640003, Taiwan;
| | - Hsien-Hui Chung
- Department of Pharmacy & Clinical Trial Pharmacy, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan
- St. Edmund Hall, University of Oxford, Oxford OX1 4AR, UK
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City 320314, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 907101, Taiwan
| |
Collapse
|
3
|
Li Q, Lin G, Zhang K, Liu X, Li Z, Bing X, Nie Z, Jin S, Guo J, Min X. Hypoxia exposure induces lactylation of Axin1 protein to promote glycolysis of esophageal carcinoma cells. Biochem Pharmacol 2024; 226:116415. [PMID: 38972426 DOI: 10.1016/j.bcp.2024.116415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The hypoxic microenvironment in esophageal carcinoma is an important factor promoting the rapid progression of malignant tumor. This study was to investigate the lactylation of Axin1 on glycolysis in esophageal carcinoma cells under hypoxia exposure. Hypoxia treatment increases pan lysine lactylation (pan-kla) levels of both TE1 and EC109 cells. Meanwhile, ECAR, glucose consumption and lactate production were also upregulated in both TE1 and EC109 cells. The expression of embryonic stem cell transcription factors NANOG and SOX2 were enhanced in the hypoxia-treated cells. Axin1 overexpression partly reverses the induction effects of hypoxia treatment in TE1 and EC109 cells. Moreover, lactylation of Axin1 protein at K147 induced by hypoxia treatment promotes ubiquitination modification of Axin1 protein to promote glycolysis and cell stemness of TE1 and EC109 cells. Mutant Axin1 can inhibit ECAR, glucose uptake, lactate secretion, and cell stemness in TE1 and EC109 cells under normal or hypoxia conditions. Meanwhile, mutant Axin1 further enhanced the effects of 2-DG on inhibiting glycolysis and cell stemness. Overexpression of Axin1 also inhibited tumor growth in vivo, and was related to suppressing glycolysis. In conclusion, hypoxia treatment promoted the glycolysis and cell stemness of esophageal carcinoma cells, and increased the lactylation of Axin1 protein. Overexpression of Axin1 functioned as a glycolysis inhibitor, and suppressed the effects of hypoxia exposure in vitro and inhibited tumor growth in vivo. Mechanically, hypoxia induces the lactylation of Axin1 protein and promotes the ubiquitination of Axin1 to degrade the protein, thereby exercising its anti-glycolytic function.
Collapse
Affiliation(s)
- Qian Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China; Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guihu Lin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Kaihua Zhang
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xinbo Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhantao Li
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Xiaohan Bing
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Zhenkai Nie
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Shan Jin
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China
| | - Jin Guo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China.
| | - Xianjun Min
- Department of Thoracic Surgery, China Aerospace Science and Industry Corporation 731 Hospital, Beijing, China.
| |
Collapse
|
4
|
Ma J, Veeragoni D, Ghosh H, Mutter N, Barbosa G, Webster L, Schobert R, van de Sande W, Dandawate P, Biersack B. Superior Anticancer and Antifungal Activities of New Sulfanyl-Substituted Niclosamide Derivatives. Biomedicines 2024; 12:1621. [PMID: 39062194 PMCID: PMC11275179 DOI: 10.3390/biomedicines12071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The approved anthelmintic salicylanilide drug niclosamide has shown promising anticancer and antimicrobial activities. In this study, new niclosamide derivatives with trifluoromethyl, trifluoromethylsulfanyl, and pentafluorosulfanyl substituents replacing the nitro group of niclosamide were prepared (including the ethanolamine salts of two promising salicylanilides) and tested for their anticancer activities against esophageal adenocarcinoma (EAC) cells. In addition, antifungal activity against a panel of Madurella mycetomatis strains, the most abundant causative agent of the neglected tropical disease eumycetoma, was evaluated. The new compounds revealed higher activities against EAC and fungal cells than the parent compound niclosamide. The ethanolamine salt 3a was the most active compound against EAC cells (IC50 = 0.8-1.0 µM), and its anticancer effects were mediated by the downregulation of anti-apoptotic proteins (BCL2 and MCL1) and by decreasing levels of β-catenin and the phosphorylation of STAT3. The plausibility of binding to the latter factors was confirmed by molecular docking. The compounds 2a and 2b showed high in vitro antifungal activity against M. mycetomatis (IC50 = 0.2-0.3 µM) and were not toxic to Galleria mellonella larvae. Slight improvements in the survival rate of G. mellonella larvae infected with M. mycetomatis were observed. Thus, salicylanilides such as 2a and 3a can become new anticancer and antifungal drugs.
Collapse
Affiliation(s)
- Jingyi Ma
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Dileepkumar Veeragoni
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Hindole Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Nicole Mutter
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Gisele Barbosa
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Lauren Webster
- Wellcome Centre—Antiinfectives Research, School of Life Sciences, University of Dundee, Nethergate, Dundee DD1 4HN, UK; (N.M.); (G.B.); (L.W.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Wendy van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA; (D.V.); (H.G.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| |
Collapse
|
5
|
Wang K, Wang J, Chen Y, Long H, Pan W, Liu Y, Xu MY, Guo Q. Causal relationship between gut microbiota and risk of esophageal cancer: evidence from Mendelian randomization study. Aging (Albany NY) 2024; 16:3596-3611. [PMID: 38364235 PMCID: PMC10929825 DOI: 10.18632/aging.205547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The causative implications remain ambiguous. Consequently, this study aims to evaluate the putative causal relationship between gut microbiota and Esophageal cancer (EC). METHODS The genome-wide association study (GWAS) pertaining to the microbiome, derived from the MiBioGen consortium-which consolidates 18,340 samples across 24 population-based cohorts-was utilized as the exposure dataset. Employing the GWAS summary statistics specific to EC patients sourced from the GWAS Catalog and leveraging the two-sample Mendelian randomization (MR) methodology, the principal analytical method applied was the inverse variance weighted (IVW) technique. Cochran's Q statistic was utilized to discern heterogeneity inherent in the data set. Subsequently, a reverse MR analysis was executed. RESULTS Findings derived from the IVW technique elucidated that the Family Porphyromonadaceae (P = 0.048) and Genus Candidatus Soleaferrea (P = 0.048) function as deterrents against EC development. In contrast, the Genus Catenibacterium (P = 0.044), Genus Eubacterium coprostanoligenes group (P = 0.038), Genus Marvinbryantia (P = 0.049), Genus Ruminococcaceae UCG010 (P = 0.034), Genus Ruminococcus1 (P = 0.047), and Genus Sutterella (P = 0.012) emerged as prospective risk contributors for EC. To assess reverse causal effect, we used EC as the exposure and the gut microbiota as the outcome, and this analysis revealed associations between EC and seven different types of gut microbiota. The robustness of the MR findings was substantiated through comprehensive heterogeneity and pleiotropy evaluations. CONCLUSIONS This research identified certain microbial taxa as either protective or detrimental elements for EC, potentially offering valuable biomarkers for asymptomatic diagnosis and prospective therapeutic interventions for EC.
Collapse
Affiliation(s)
- Kui Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People’s Hospital, Jieyang 515500, Guangdong Province, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Huan Long
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan 528000, Guangdong, China
| | - Yunfei Liu
- University Munich, Munich D-81377, Germany
| | - Ming-Yi Xu
- Department of Gastroenterology, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai 310115, China
| | - Qiang Guo
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| |
Collapse
|
6
|
Li Y, Wei B, Xue X, Li H, Li J. Microbiome changes in esophageal cancer: implications for pathogenesis and prognosis. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0177. [PMID: 37817487 PMCID: PMC10884538 DOI: 10.20892/j.issn.2095-3941.2023.0177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Esophageal cancer (EC) is an aggressive malignancy with a poor prognosis. Various factors, including dietary habits, and antacid and antibiotic use, have been shown to influence the esophageal microbiome. Conversely, enrichment and diversity of the esophageal microbiome can also impact its function. Recent studies have revealed prevalent changes in the esophageal microbiome among patients with EC, thus suggesting the potential contribution of the esophageal microbiome to EC development. Additionally, distinct microbiome compositions have been observed in patients with different responses to radiotherapy and chemotherapy, indicating the role of the esophageal microbiome in modulating treatment outcomes. In this review, we have examined previous studies on the esophageal microbiome in healthy individuals and patients with EC or other esophageal diseases, with a focus on identifying microbial communities associated with EC pathogenesis and prognosis. Understanding the role of the microbiome in EC may aid in early detection and optimized treatment strategies, ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- Yi Li
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450003, China
| | - Bing Wei
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450003, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou 450003, China
| | - Xia Xue
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongle Li
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450003, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou 450003, China
| | - Jun Li
- Department of Molecular Pathology, Clinical Pathology Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450003, China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou 450003, China
| |
Collapse
|
7
|
Schleser SW, Ghosh H, Hörner G, Seib J, Bhattacharyya S, Weber B, Schobert R, Dandawate P, Biersack B. New 4,5-Diarylimidazol-2-ylidene-iodidogold(I) Complexes with High Activity against Esophageal Adenocarcinoma Cells. Int J Mol Sci 2023; 24:5738. [PMID: 36982817 PMCID: PMC10052191 DOI: 10.3390/ijms24065738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Inspired by the vascular-disrupting agent combretastatin A-4 and recently published anticancer active N-heterocyclic carbene (NHC) complexes of Au(I), a series of new iodidogold(I)-NHC complexes was synthesized and characterized. The iodidogold(I) complexes were synthesized by a route involving van Leusen imidazole formation and N-alkylation, followed by complexation with Ag2O, transmetalation with chloro(dimethylsulfide)gold(I) [Au(DMS)Cl], and anion exchange with KI. The target complexes were characterized by IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. The structure of 6c was validated via single-crystal X-ray diffraction. A preliminary anticancer screening of the complexes using two esophageal adenocarcinoma cell lines showed promising nanomolar activities for certain iodidogold(I) complexes accompanied with apoptosis induction, as well as c-Myc and cyclin D1 suppression in esophageal adenocarcinoma cells treated with the most promising derivative 6b.
Collapse
Affiliation(s)
- Sebastian W. Schleser
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Hindole Ghosh
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Gerald Hörner
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Jonathan Seib
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Sangita Bhattacharyya
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Birgit Weber
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Prasad Dandawate
- Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Bernhard Biersack
- Organic Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
8
|
Ardalan Khales S, Forghanifard MM, Abbaszadegan MR, Hosseini SE. EZH2 deregulates BMP, Hedgehog, and Hippo cell signaling pathways in esophageal squamous cell carcinoma. Adv Med Sci 2023; 68:21-30. [PMID: 36403545 DOI: 10.1016/j.advms.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE Cell signaling pathways play central roles in cellular stemness state, and aberrant activation of these cascades is attributed to the severity of esophageal squamous cell carcinoma (ESCC). In this study, we aimed to determine the potential impact of enhancer of zeste homolog 2 (EZH2) gene on different cell signaling pathways including bone morphogenesis protein (BMP), Hedgehog, and Hippo in ESCC, and to illuminate EZH2-mediated gene regulatory networks in this aggressive malignancy. MATERIALS AND METHODS EZH2 silencing was performed in two ESCC lines, KYSE-30 and YM-1, followed by gene expression analysis of BMP, Hedgehog, and Hippo signaling using RT-qPCR. EZH2 enforced expression was induced in both cell lines and gene expression of the pathways was evaluated in parallel. The contribution of EZH2 in epithelial-mesenchymal transition (EMT) and cell migration were also evaluated. RESULTS EZH2 downregulation decreased expression of the vital components of the Hedgehog and Hippo signaling, while EZH2 upregulation significantly increased its levels in both ESCC cell lines. The expression of BMP target genes was either reduced in EZH2-expressing cells or increased in EZH2-silencing cells. Enforced expression of EZH2 stimulated downregulation of epithelial markers and upregulation of mesenchymal markers in KYSE-30 and YM-1 cells. Significant downregulation of mesenchymal markers was detected following the silencing of EZH2 in the cells. Knocking down EZH2 decreased migration, while enforced expression of EZH2 increased migration in both ESCC lines. CONCLUSIONS These results may support the promoting role of EZH2 in ESCC tumorigenesis through the recruitment of important cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Seyed Ebrahim Hosseini
- Department of Biology, Faculty of Sciences, Zand Institute of Higher Education, Shiraz, Iran
| |
Collapse
|
9
|
A Gold Nanoparticle Bioconjugate Delivery System for Active Targeted Photodynamic Therapy of Cancer and Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14194558. [PMID: 36230480 PMCID: PMC9559518 DOI: 10.3390/cancers14194558] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer stem cells (CSCs), also called tumor-initiating cells, are a subpopulation of cancer cells believed to be the leading cause of cancer initiation, growth, metastasis, and recurrence. Presently there are no effective treatments targeted at eliminating CSCs. Hence, an urgent need to develop measures to target CSCs to eliminate potential recurrence and metastasis associated with CSCs. Cancer stem cells have inherent and unique features that differ from other cancer cells, which they leverage to resist conventional therapies. Targeting such features with photodynamic therapy (PDT) could be a promising treatment for drug-resistant cancer stem cells. Photodynamic therapy is a light-mediated non-invasive treatment modality. However, PDT alone is unable to eliminate cancer stem cells effectively, hence the need for a targeted approach. Gold nanoparticle bioconjugates with PDT could be a potential approach for targeted photodynamic therapy of cancer and CSCs. This approach has the potential for enhanced drug delivery, selective and specific attachment to target tumor cells/CSCs, as well as the ability to efficiently generate ROS. This review examines the impact of a smart gold nanoparticle bioconjugate coupled with a photosensitizer (PS) in promoting targeted PDT of cancer and CSC.
Collapse
|
10
|
Fan X, Song J, Fan Y, Li J, Chen Y, Zhu H, Zhang Z. CSMD1 Mutation Related to Immunity Can Be Used as a Marker to Evaluate the Clinical Therapeutic Effect and Prognosis of Patients with Esophageal Cancer. Int J Gen Med 2021; 14:8689-8710. [PMID: 34849012 PMCID: PMC8627272 DOI: 10.2147/ijgm.s338284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION As a highly aggressive tumor with a poor prognosis, esophageal cancer (ESCA)'s relationship with gene mutations is unclear. Therefore, we tried to explore the role of gene mutation in ESCA progression and its relationship with immune response, clinical treatment, and prognosis. METHODS In addition to copy number variation (CNV) situations of common genes obtained from 2 public databases, the relationship between mutations and prognosis/tumor mutational burden (TMB) was also analyzed. Kaplan-Meier survival and Cox regression analysis were used to identify the CSMD1 mutation status as an independent predictor of prognosis. We also enriched related functions and pathways. Next, the relationship between 22 immune cells and CSMD1 mutation status was analyzed. In addition to the differences in the expression levels of immune checkpoint inhibitors (ICIs)-related genes between the high TMB and low TMB groups, the differences in the expression levels of ICIs/m6a/multi-drug resistance-related genes and the sensitivity of three chemotherapeutic drugs between CSMD1 mutant and the wild group were also compared. In addition to differences and prognostic analysis of CSMD1 expression, the correlation analysis between the expression of these genes/immune cells and the expression of CSMD1 was also performed. Finally, a nomogram that could efficiently and conveniently predict the survival probability of ESCA patients was constructed and verified. RESULTS We obtained 17 frequently mutated genes distribution. Mutation and loss of CSMD1 are frequent in ESCA. Only CSMD1 mutation can be used as an independent predictor of poor prognosis. Patients in the high TMB group have a lower survival probability. Wild CSMD1 may be involved in immune-related pathways. More helper T cells and fewer resting state dendritic cells were found in the CSMD1 mutant group. The PD-1 expression in the high TMB group showed higher. Paclitaxel sensitivity and ABCC1 expression were higher in the wild CSMD1 group. Most cancers show differential expression of CSMD1. Except for the prognosis of ESCA, the expression of CSMD1 is related to immune cell content and the expression of ICIs/m6a/multi-drug resistance related genes. DISCUSSION CSMD1 mutation could be used as an immune-related biomarker to predict prognosis and treatment effect of paclitaxel. Mutation and loss of CSMD1 may promote the progression of ESCA.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jianxiong Song
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yating Fan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Yutao Chen
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Huanhuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| | - Zhiyuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, The First Clinical Medical College of Nanchang University, Nanchang, 330000, People’s Republic of China
| |
Collapse
|