1
|
Sun Y, Liu J, Zhan D, Wei J, XianShi L, Zhang R, Duan C, Zhang D, Tang X, Lin T, Li L, Lai X. Depletion of Tregs from CD4 + CAR-T cells enhances the tumoricidal effect of CD8 + CAR-T cells in anti-CD19 CAR-T therapy. FEBS J 2025; 292:1904-1919. [PMID: 39632397 PMCID: PMC12001162 DOI: 10.1111/febs.17326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 07/18/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy, which targets CD19 for hematological malignancies, represents a breakthrough in cancer immunotherapy. However, some patients may develop resistance to CAR-T treatment, underscoring the importance of optimizing CAR-T design to enhance responsiveness. Here, we investigated the impact of different subpopulations in anti-CD19 CAR-T cells on the tumoricidal effect. Different populations of anti-CD19 CAR-T cells were isolated by magnetic-activated cell sorting (MACS). Their lytic activities on the acute lymphocytic leukemia cell line SUP-B15 and diffuse large B-cell lymphoma EB-3 cell line were examined in a co-culture system. The anti-tumorigenic outcome of different CAR-T cell compositions was evaluated in a xenograft mouse model of EB-3 cells. CD8+CAR-T cells exhibited the most potent tumoricidal activity against SUP-B15 and EB-3 cells. Additionally, CD4+ T helper cells enhanced the lytic effects of CD8+ CAR-T cells by increasing the availability of interleukin-2 (IL-2). Depleting CD25+Treg (T regulatory) cells from CD4+CAR-T population further augmented the tumoricidal activity of CD8+CAR-T cells by preventing IL-2 deprivation. Consistently, in vivo experiments demonstrated that the CD4+CD25+ Treg population dampened the antitumor activity of CD8+CAR-T cells, while depletion of Tregs from CD4+CAR-T cells enhanced the tumoricidal effect. These findings emphasize the potential role of CAR Treg cells in therapeutic resistance, suggesting that the depletion of Tregs in the anti-CD19 CAR-T population may serve as a strategy to augment the anticancer effect of CD8+CAR-T cells.
Collapse
MESH Headings
- Animals
- Humans
- Antigens, CD19/immunology
- Antigens, CD19/genetics
- Mice
- T-Lymphocytes, Regulatory/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
- CD4-Positive T-Lymphocytes/immunology
- Interleukin-2
- Interleukin-2 Receptor alpha Subunit
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Jinyan Liu
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Dong Zhan
- Department of Human Anatomy and Histology & Embrology, School of Basic Medical SciencesKunming Medical UniversityChina
| | - Jia Wei
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Li XianShi
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Rui Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Ci Duan
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Disi Zhang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Xiaorong Tang
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| | - Tuo Lin
- Yunnan College of Business ManagementKunmingChina
| | - Limei Li
- Yunnan College of Business ManagementKunmingChina
| | - Xun Lai
- Department of Hematology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical UniversityPeking University Cancer Hospital YunnanKunmingChina
| |
Collapse
|
2
|
Zhang R, Zhang D, Luo Y, Sun Y, Duan C, Yang J, Wei J, Li X, Lu Y, Lai X. miR-34a promotes the immunosuppressive function of multiple myeloma-associated macrophages by dampening the TLR-9 signaling. Cancer Med 2024; 13:e7387. [PMID: 38864479 PMCID: PMC11167606 DOI: 10.1002/cam4.7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Promising outcomes have been observed in multiple myeloma (MM) with the use of immunotherapies, specifically chimeric antigen receptor T (CAR-T) cell therapy. However, a portion of MM patients do not respond to CAR-T therapy, and the reasons for this lack of response remain unclear. The objective of this study was to investigate the impact of miR-34a on the immunosuppressive polarization of macrophages obtained from MM patients. METHODS The levels of miR-34a and TLR9 (Toll-like receptor 9) were examined in macrophages obtained from both healthy individuals and patients with MM. ELISA was employed to investigate the cytokine profiles of the macrophage samples. Co-culture experiments were conducted to evaluate the immunomodulatory impact of MM-associated macrophages on CAR-T cells. RESULTS There was an observed suppressed activation of macrophages and CD4+ T lymphocytes in the blood samples of MM patients. Overexpression of miR-34a in MM-associated macrophages dampened the TLR9 expression and impaired the inflammatory polarization. In both the co-culture system and an animal model, MM-associated macrophages suppressed the activity and tumoricidal effect of CAR-T cells in a miR-34a-dependent manner. CONCLUSION The findings imply that targeting the macrophage miR-34a/TLR9 axis could potentially alleviate the immunosuppression associated with CAR-T therapy in MM patients.
Collapse
Affiliation(s)
- Rui Zhang
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Disi Zhang
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Yilan Luo
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Yunyan Sun
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Ci Duan
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Jiapeng Yang
- Department of Thoracic SurgeryYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Jia Wei
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Xianshi Li
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Yanqi Lu
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| | - Xun Lai
- Department of HematologyYunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital YunnanNo.519 Kunzhou Road, Xishan DistrictKunmingYunnan ProvinceChina
| |
Collapse
|
3
|
Pang Y, Ghosh N. Novel and multiple targets for chimeric antigen receptor-based therapies in lymphoma. Front Oncol 2024; 14:1396395. [PMID: 38711850 PMCID: PMC11070555 DOI: 10.3389/fonc.2024.1396395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting CD19 in B-cell non-Hodgkin lymphoma (NHL) validates the utility of CAR-based therapy for lymphomatous malignancies. Despite the success, treatment failure due to CD19 antigen loss, mutation, or down-regulation remains the main obstacle to cure. On-target, off-tumor effect of CD19-CAR T leads to side effects such as prolonged B-cell aplasia, limiting the application of therapy in indolent diseases such as chronic lymphocytic leukemia (CLL). Alternative CAR targets and multi-specific CAR are potential solutions to improving cellular therapy outcomes in B-NHL. For Hodgkin lymphoma and T-cell lymphoma, several cell surface antigens have been studied as CAR targets, some of which already showed promising results in clinical trials. Some antigens are expressed by different lymphomas and could be used for designing tumor-agnostic CAR. Here, we reviewed the antigens that have been studied for novel CAR-based therapies, as well as CARs designed to target two or more antigens in the treatment of lymphoma.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Wake Forest School of Medicine, Charlotte, NC, United States
| | | |
Collapse
|
4
|
Ma XC, Lv X, Li Y. Development of CD30 CAR-T cells in refractory or relapsed Hodgkin's lymphoma. Expert Rev Hematol 2023; 16:1017-1023. [PMID: 37888882 DOI: 10.1080/17474086.2023.2276210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION After therapy, approximately 15% of individuals with Hodgkin's lymphoma (HL) develop relapsed or drug-resistant Hodgkin's lymphoma (r/rHL). r/rHL has a high fatality rate and poor therapeutic prognosis. CD30 CAR-T-cell therapy has emerged as a new way to treat r/rHL in recent years. However, CD30CAR-T cells are still being explored in clinical trials. To help more patients, this review focuses on current CD30CAR-T-cell advancements as well as clinical breakthroughs in treatment of r/rHL. AREAS COVERED This research examines the mechanism of action of CD30 CAR-T cells, their function in the real-world therapy of r/rHL, and the influence of different treatment regimens on treatment results. EXPERT OPINION There has been much research into CD30 CAR-T cells as a result of their successful use in treatment of r/rHL. This research has helped us to understand CD30 CAR-T-cell safety as well as the management options available before and after its administration to increase patient survival and reduce side effects.
Collapse
Affiliation(s)
- Xiao Chen Ma
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Xiao Lv
- Department of Haematology, Shan dong Provincial Hospital Affiliated to Shan dong First Medical University; Shan dong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ying Li
- Department of Haematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Gao Z, Lian Y, Ti J, Ren R, Ma L. Therapeutic efficacy and infectious complications of CD19-targeted chimeric antigen receptor-modified T cell immunotherapy. Anticancer Drugs 2023; 34:551-557. [PMID: 36728516 PMCID: PMC9997630 DOI: 10.1097/cad.0000000000001485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/14/2022] [Indexed: 02/03/2023]
Abstract
Lymphocyte depletion chemotherapy CD19-targeted chimeric antigen receptor-modified T (CAR-T) cell immunotherapy is an innovative approach for the treatment of refractory or relapsed B-cell malignancies. This method also has the occurrence of infection, and there has been no systematic analysis of infectious complications. In our study, we intend to analyze the infection in patients between day 0 and day 90 by analyzing the data of 40 patients who received CD19 CAR-T cell therapy collected in our hospital. We assessed risk factors for infection before and after treatment using Poisson and Cox regression, respectively. A cohort study was used, including patients with acute lymphocytic leukemia, chronic lymphocytic leukemia and non-Hodgkin's lymphoma. 40 patients were infected for the first time occurred at a median of 6 days after CAR-T cell infusion, and 8 (20%) had 10 infections within 28 days after CAR-T cell infusion, on days 29 and 29. The infection density between 90 days was lower at 0.67. This resulted in an infection density of 1.19 infections per 100 days. Two patients (5%) developed invasive fungal infections and two patients (5%) developed life-threatening or fatal infections. In an adjusted model for baseline characteristics, patients with ALL, ≥4 prior antitumor regimens, and receiving the highest CAR-T cell dose had higher infection densities at 28 days. The incidence of infection was comparable to that observed in clinical trials of salvage associated with infection after CAR-T cell infusion.
Collapse
Affiliation(s)
- Zhilin Gao
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Lian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Ti
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruirui Ren
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liangming Ma
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Nasiri F, Safarzadeh Kozani P, Rahbarizadeh F. T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Front Immunol 2023; 14:1063838. [PMID: 36875091 PMCID: PMC9978144 DOI: 10.3389/fimmu.2023.1063838] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has established itself as a potent therapeutic option for certain patients with relapsed/refractory (R/R) hematologic malignancies. To date, four CD19-redirected CAR-T cell products have been granted the United States Food and Drug Administration (FDA) approval for medical use. However, all of these products are equipped with a single-chain fragment variable (scFv) as their targeting domains. Camelid single-domain antibodies (VHH or nanobody) can also be used as alternatives to scFvs. In this study, we developed VHH-based CD19-redirected CAR-Ts, and compared them with their FMC63 scFv-based counterpart. METHODS Human primary T cells were transduced to express a second-generation 4-1BB-CD3ζ-based CAR construct whose targeting domain was based on a CD19-specific VHH. The expansion rate, cytotoxicity, and secretion of proinflammatory cytokines (IFN-γ, IL-2, and TNF-α) of the developed CAR-Ts were assessed and compared with their FMC63 scFv-based counterpart as they were co-cultured with CD19-positive (Raji and Ramos) and CD19-negative (K562) cell lines. RESULTS VHH-CAR-Ts showed an expansion rate comparable to that of the scFv-CAR-Ts. In terms of cytotoxicity, VHH-CAR-Ts mediated cytolytic reactions against CD19-positive cell lines, comparable to those of their scFv-based counterparts. Moreover, both VHH-CAR-Ts and scFv-CAR-Ts secreted remarkably higher and similar levels of IFN-γ, IL-2, and TNF-α upon co-cultivation with Ramos and Raji cell lines compared with while cultured alone or co-cultured with K562 cells. CONCLUSION Our results demonstrated that our VHH-CAR-Ts could mediate CD19-dependent tumoricidal reactions as potently as their scFv-based counterparts. Moreover, VHHs could be applied as the targeting domains of CAR constructs to overcome the issues associated with the use of scFvs in CAR-T therapies.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Anti-CD30 antibody-drug conjugate therapy in lymphoma: current knowledge, remaining controversies, and future perspectives. Ann Hematol 2023; 102:13-29. [PMID: 36512081 PMCID: PMC9807535 DOI: 10.1007/s00277-022-05054-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
CD30 is overexpressed in several lymphoma types, including classic Hodgkin lymphoma (cHL), some peripheral T-cell lymphomas (PTCL), and some cutaneous T-cell lymphomas. The antibody-drug conjugate brentuximab vedotin targets CD30-positive cells and has been evaluated for the treatment of various lymphoma entities. This narrative review summarizes 10 years of experience with brentuximab vedotin for the treatment of CD30-positive lymphomas, discusses novel therapies targeting CD30 in development, and highlights remaining controversies relating to CD30-targeted therapy across lymphoma types. The collective body of evidence for brentuximab vedotin demonstrates that exploitation of CD30 can provide sustained benefits across a range of different CD30-positive lymphomas, in both clinical trials and real-world settings. Preliminary experience with brentuximab vedotin in combination with immune checkpoint inhibitors for relapsed/refractory cHL is encouraging, but further exploration is required. The optimal use of brentuximab vedotin for first-line therapy of PTCL remains to be determined. Further research is required on brentuximab vedotin treatment in high-risk patient populations, and in rare lymphoma subtypes, for which no standard of care exists. Novel therapies targeting CD30 include chimeric antigen receptor therapies and bispecific antibody T-cell engagers, which may be expected to further improve outcomes for patients with CD30-positive lymphomas in the coming years.
Collapse
|
8
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|