1
|
Ding T, Lin Q, Qu X. From chronic obstructive pulmonary disease (COPD) to lung cancer: a Mendelian randomization study revealing mediation pathways through plasma metabolomics, proteomics, and immunophenotyping. Discov Oncol 2025; 16:629. [PMID: 40295454 PMCID: PMC12037952 DOI: 10.1007/s12672-025-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and lung cancer are pathologically intertwined, with chronic inflammation fostering carcinogenic transformation through dynamic interactions in the tumor microenvironment. METHODS This investigation utilized a comprehensive two-sample Mendelian randomization (MR) approach on public genetic datasets to mitigate confounding and determine causality between COPD and lung cancer. We integrated 1400 plasma metabolite characteristics (N = 8299), 731 immune cell attributes (N = 3757), and 4907 plasma protein characteristics (N = 35,559), employing two-sample MR to deduce causal correlations with lung cancer. Sensitivity assessments were executed to fortify the robustness of MR outcomes. Finally, Mendelian mediation analysis was administered to delineate the pathways mediated by plasma immune cells, metabolites, and proteins in the COPD-to-lung cancer continuum. Additionally, we validated our findings using external datasets from the NHANES and TCGA databases to further confirm the reliability of the results. RESULTS MR analysis confirmed COPD as a causal risk factor for lung cancer (IVW P-value = 1.38 × 10-5, OR = 1.63(1.31-2.02). We recognized 96 plasma metabolites (comprising 77 distinct metabolites and 19 ratios), 30 immune cell categories, and 58 plasma proteins as having putative causal associations with lung cancer. Mediation analysis revealed 9 mediator interactions, implicating 3 immune cell types, 1 metabolite, and 5 proteins, Sensitivity analyses verified homogeneity and negated pleiotropic effects. CONCLUSION Our genetic inquiry endorses a causal link from COPD to lung cancer, mediated through plasma-based immunological, metabolic, and proteomic mechanisms. These biomarkers afford groundbreaking insights into the etiology of lung cancer, facilitating its prophylaxis, diagnosis, and therapeutic interventions.
Collapse
Affiliation(s)
- Tianjian Ding
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiaoming Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, N0.420 Fuma Road, Fuzhou, Fujian, China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Riondino S, Rosenfeld R, Formica V, Morelli C, Parisi G, Torino F, Mariotti S, Roselli M. Effectiveness of Immunotherapy in Non-Small Cell Lung Cancer Patients with a Diagnosis of COPD: Is This a Hidden Prognosticator for Survival and a Risk Factor for Immune-Related Adverse Events? Cancers (Basel) 2024; 16:1251. [PMID: 38610929 PMCID: PMC11011072 DOI: 10.3390/cancers16071251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The interplay between the immune system and chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC) is complex and multifaceted. In COPD, chronic inflammation and oxidative stress can lead to immune dysfunction that can exacerbate lung damage, further worsening the respiratory symptoms. In NSCLC, immune cells can recognise and attack the cancer cells, which, however, can evade or suppress the immune response by various mechanisms, such as expressing immune checkpoint proteins or secreting immunosuppressive cytokines, thus creating an immunosuppressive tumour microenvironment that promotes cancer progression and metastasis. The interaction between COPD and NSCLC further complicates the immune response. In patients with both diseases, COPD can impair the immune response against cancer cells by reducing or suppressing the activity of immune cells, or altering their cytokine profile. Moreover, anti-cancer treatments can also affect the immune system and worsen COPD symptoms by causing lung inflammation and fibrosis. Immunotherapy itself can also cause immune-related adverse events that could worsen the respiratory symptoms in patients with COPD-compromised lungs. In the present review, we tried to understand the interplay between the two pathologies and how the efficacy of immunotherapy in NSCLC patients with COPD is affected in these patients.
Collapse
|
3
|
Chu M, Wang R, Jing X, Li D, Fu G, Deng J, Xu Z, Zhao J, Liu Z, Fan Q, Pei L, Zeng Z, Liu C, Chen Z, Lu J, Liu XA. Conventional and multi-omics assessments of subacute inhalation toxicity due to propylene glycol and vegetable glycerin aerosol produced by electronic cigarettes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:116002. [PMID: 38277972 DOI: 10.1016/j.ecoenv.2024.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Propylene glycol (PG) and vegetable glycerin (VG) are the most common solvents used in electronic cigarette liquids. No long-term inhalation toxicity assessments have been performed combining conventional and multi-omics approaches on the potential respiratory effects of the solvents in vivo. In this study, the systemic toxicity of aerosol generated from a ceramic heating coil-based e-cigarette was evaluated. First, the aerosol properties were characterized, including carbonyl emissions, the particle size distribution, and aerosol temperatures. To determine toxicological effects, rats were exposed, through their nose only, to filtered air or a propylene glycol (PG)/ glycerin (VG) (50:50, %W/W) aerosol mixture at the target concentration of 3 mg/L for six hours daily over a continuous 28-day period. Compared with the air group, female rats in the PG/VG group exhibited significantly lower body weights during both the exposure period and recovery period, and this was linked to a reduced food intake. Male rats in the PG/VG group also experienced a significant decline in body weight during the exposure period. Importantly, rats exposed to the PG/VG aerosol showed only minimal biological effects compared to those with only air exposure, with no signs of toxicity. Moreover, the transcriptomic, proteomic, and metabolomic analyses of the rat lung tissues following aerosol exposure revealed a series of candidate pathways linking aerosol inhalation to altered lung functions, especially the inflammatory response and disease. Dysregulated pathways of arachidonic acids, the neuroactive ligand-receptor interaction, and the hematopoietic cell lineage were revealed through integrated multi-omics analysis. Therefore, our integrated multi-omics approach offers novel systemic insights and early evidence of environmental-related health hazards associated with an e-cigarette aerosol using two carrier solvents in a rat model.
Collapse
Affiliation(s)
- Ming Chu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; Laboratory of Life and Health Sciences, Shenzhen First union Technology Co., Ltd, Shenzhen 518103, China
| | - Ruoxi Wang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiaoyuan Jing
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ding Li
- Laboratory of Life and Health Sciences, Shenzhen First union Technology Co., Ltd, Shenzhen 518103, China; Laboratory of Life and Health Sciences, Shenzhen Health Union Biotechnology Co., Ltd, Shenzhen 518103, China
| | - Guofeng Fu
- Laboratory of Life and Health Sciences, Shenzhen First union Technology Co., Ltd, Shenzhen 518103, China
| | - Jingjing Deng
- Laboratory of Life and Health Sciences, Shenzhen Health Union Biotechnology Co., Ltd, Shenzhen 518103, China
| | - Zhibin Xu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Jing Zhao
- Laboratory of Life and Health Sciences, Shenzhen Health Union Biotechnology Co., Ltd, Shenzhen 518103, China
| | - Zhang Liu
- Laboratory of Life and Health Sciences, Shenzhen Health Union Biotechnology Co., Ltd, Shenzhen 518103, China
| | - Qiming Fan
- Guangdong Zhongke EnHealth Science and Technology Co., Ltd. Foshan 528000, China
| | - Lanjie Pei
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chuan Liu
- Laboratory of Life and Health Sciences, Shenzhen First union Technology Co., Ltd, Shenzhen 518103, China
| | - Zuxin Chen
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS); Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jin Lu
- Laboratory of Life and Health Sciences, Shenzhen First union Technology Co., Ltd, Shenzhen 518103, China; Laboratory of Life and Health Sciences, Shenzhen Health Union Biotechnology Co., Ltd, Shenzhen 518103, China.
| | - Xin-An Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Rahman SJ, Chen SC, Wang YT, Gao Y, Schepmoes AA, Fillmore TL, Shi T, Chen H, Rodland KD, Massion PP, Grogan EL, Liu T. Validation of a Proteomic Signature of Lung Cancer Risk from Bronchial Specimens of Risk-Stratified Individuals. Cancers (Basel) 2023; 15:4504. [PMID: 37760474 PMCID: PMC10526486 DOI: 10.3390/cancers15184504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
A major challenge in lung cancer prevention and cure hinges on identifying the at-risk population that ultimately develops lung cancer. Previously, we reported proteomic alterations in the cytologically normal bronchial epithelial cells collected from the bronchial brushings of individuals at risk for lung cancer. The purpose of this study is to validate, in an independent cohort, a selected list of 55 candidate proteins associated with risk for lung cancer with sensitive targeted proteomics using selected reaction monitoring (SRM). Bronchial brushings collected from individuals at low and high risk for developing lung cancer as well as patients with lung cancer, from both a subset of the original cohort (batch 1: n = 10 per group) and an independent cohort of 149 individuals (batch 2: low risk (n = 32), high risk (n = 34), and lung cancer (n = 83)), were analyzed using multiplexed SRM assays. ALDH3A1 and AKR1B10 were found to be consistently overexpressed in the high-risk group in both batch 1 and batch 2 brushing specimens as well as in the biopsies of batch 1. Validation of highly discriminatory proteins and metabolic enzymes by SRM in a larger independent cohort supported their use to identify patients at high risk for developing lung cancer.
Collapse
Affiliation(s)
- S.M. Jamshedur Rahman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Thomas L. Fillmore
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| | - Heidi Chen
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37203, USA; (S.-C.C.); (H.C.)
| | - Karin D. Rodland
- Department of Cell, Developmental, and Cancer Biology, Oregon Health and Science University, Portland, OR 97201, USA;
| | - Pierre P. Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (S.M.J.R.); (P.P.M.)
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Eric L. Grogan
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; (Y.-T.W.); (Y.G.); (A.A.S.); (T.S.)
| |
Collapse
|
5
|
Zhang Q, Feng X, Hu W, Li C, Sun D, Peng Z, Wang S, Li H, Zhou M. Chronic obstructive pulmonary disease alters the genetic landscape and tumor immune microenvironment in lung cancer patients. Front Oncol 2023; 13:1169874. [PMID: 37388220 PMCID: PMC10301745 DOI: 10.3389/fonc.2023.1169874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of morbidity and mortality worldwide. Studies have reported molecular alterations in patients with lung cancer and in patients with COPD. However, few investigation has been conducted on the molecular characteristics of lung cancer patients with COPD. Materials and methods We performed a retrospective cohort study that included 435 patients with pathologically confirmed lung cancer at the Ruijin Hospital. For patients with documented spirometry, Global Initiative for Chronic Obstructive Lung Disease criteria were used to define COPD. For patients without documented spirometry, chest computed tomography and other clinical information were used to define COPD. Tumor tissue DNA was extracted from formalin-fixed paraffin-embedded samples. DNA mutation analysis, multiplex immunohistochemistry (mIHC), calculation of tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), and predication of neoantigens were performed. Results Although SNV mutations in lung cancer patients with COPD (G1 group) were generally higher than those in lung cancer patients without COPD (G2 group), the difference in the number of mutations was insignificant between the two groups. Of the 35 mutated genes, the number of them was higher in G1 than in G2, except that of EGFR. PI3K-Akt signaling pathway was enriched from significantly different genes. While TMB and MATH levels were not significantly different, the tumor neoantigen burdenwas markedly higher in G1 than that in G2. The level of CD68+ macrophages was significant higher in the stroma and total areas in the G1 group than in G2 group. The level of CD8+ lymphocytes was markedly higher in the stroma and showed a clear tendency forhigher expression in the G1 group than inthe G2 group. No significant differences were observed for the level of programmed death-ligand 1+ (PD-L1+), programmed death 1+ (PD-1+), and CD68PD-L1 in the stroma, tumor and total areas. Conclusion Our study revealed different genetic aberrations and pathways, higher neoantigen burden, and higher level of CD68+ macrophages and CD8+ T lymphocytes in lung cancer patients with COPD. Our investigation implies that the existence of COPD should be considered and immunotherapy is a potential choice when treating lung cancer patients with COPD.
Collapse
Affiliation(s)
- Qiurui Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xijia Feng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Chengqiang Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | - Zhao Peng
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | | | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
6
|
Marquina Escalante F, Lévano Díaz C, Fuster Guillén D. [New therapeutic advances in patients with lung cancer immunosuppressed with chronic lung diseases in the period 2014-2022 from the review of the literature.]. Rev Esp Salud Publica 2023; 97:e202302015. [PMID: 37057359 PMCID: PMC10541256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/26/2023] [Indexed: 04/15/2023] Open
Abstract
Lung cancer is a malignant neoplasm with a high prevalence and mortality, more so in patients with respiratory comorbidities, whose cells have a massive proliferation capacity in the lung tissue, managing to invade other organs, which deteriorates the patient's physical and emotional state, decreasing their quality of life and defense system; therefore, treatment today is not sufficient for patient survival and there has been evidence of a certain evolution in the treatment of the disease or early detection to prevent it. This article aimed to analyze the new therapeutic advances in patients with lung cancer associated with chronic lung diseases in the period 2014-2022 based on a review of the literature. Several parameters were used to limit the search, extrapolating the articles of interest, validating fifty three articles, six doctoral theses and two books, which were in Spanish and English.The various search strategies used were keywords, subject and author follow-up. The sections developed in this review are the concept of Lung Cancer (LC), clinical manifestations, risk factors, relationship between LC and chronic lung diseases, diagnosis, treatment, prevention and new therapeutic advances. All the filtered information of the selected articles shows us the importance that the use of various biomarkers is taking for its early detection; however, the transfer of antitumor T cells in patients with underlying lung disease had an efficiency of 48.
Collapse
Affiliation(s)
- Fiorella Marquina Escalante
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| | - César Lévano Díaz
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| | - Doris Fuster Guillén
- Escuela de Medicina Humana, Universidad Privada San Juan BautistaUniversidad Privada San Juan BautistaChorrillosPerú
| |
Collapse
|
7
|
Forder A, Zhuang R, Souza VGP, Brockley LJ, Pewarchuk ME, Telkar N, Stewart GL, Benard K, Marshall EA, Reis PP, Lam WL. Mechanisms Contributing to the Comorbidity of COPD and Lung Cancer. Int J Mol Sci 2023; 24:ijms24032859. [PMID: 36769181 PMCID: PMC9918127 DOI: 10.3390/ijms24032859] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lung cancer and chronic obstructive pulmonary disease (COPD) often co-occur, and individuals with COPD are at a higher risk of developing lung cancer. While the underlying mechanism for this risk is not well understood, its major contributing factors have been proposed to include genomic, immune, and microenvironment dysregulation. Here, we review the evidence and significant studies that explore the mechanisms underlying the heightened lung cancer risk in people with COPD. Genetic and epigenetic changes, as well as the aberrant expression of non-coding RNAs, predispose the lung epithelium to carcinogenesis by altering the expression of cancer- and immune-related genes. Oxidative stress generated by tobacco smoking plays a role in reducing genomic integrity, promoting epithelial-mesenchymal-transition, and generating a chronic inflammatory environment. This leads to abnormal immune responses that promote cancer development, though not all smokers develop lung cancer. Sex differences in the metabolism of tobacco smoke predispose females to developing COPD and accumulating damage from oxidative stress that poses a risk for the development of lung cancer. Dysregulation of the lung microenvironment and microbiome contributes to chronic inflammation, which is observed in COPD and known to facilitate cancer initiation in various tumor types. Further, there is a need to better characterize and identify the proportion of individuals with COPD who are at a high risk for developing lung cancer. We evaluate possible novel and individualized screening strategies, including biomarkers identified in genetic studies and exhaled breath condensate analysis. We also discuss the use of corticosteroids and statins as chemopreventive agents to prevent lung cancer. It is crucial that we optimize the current methods for the early detection and management of lung cancer and COPD in order to improve the health outcomes for a large affected population.
Collapse
Affiliation(s)
- Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Zhuang
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Michelle E Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erin A Marshall
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Feng Z, Yin Y, Liu B, Wang L, Chen M, Zhu Y, Zhang H, Sun D, Qin J. ZNF143 Expression is Associated with COPD and Tumor Microenvironment in Non-Small Cell Lung Cancer. Int J Chron Obstruct Pulmon Dis 2022; 17:685-700. [PMID: 35400998 PMCID: PMC8986213 DOI: 10.2147/copd.s352392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an inflammatory-related disease highly associated with increased lung cancer risk. Studies have explored the tumor promoting roles for zinc finger protein 143 (ZNF143). However, the role of ZNF143 in COPD and tumor microenvironment of non-small cell lung cancer (NSCLC) has not been fully elucidated. Methods COPD-related key genes were identified by differential gene expression evaluation, WGCNA and SVM-RFE analysis using mRNA expression data retrieved from public databases. ROC analysis was conducted to evaluate the diagnostic value of ZNF143. Correlation between ZNF143 and clinic-pathological features, associations with tumor-infiltrating immune cells (TICs) and the relationship with predictors of immunotherapy efficacy were explored. ZNF143 gene expression was validated by qRT-PCR using an independent cohort. Results Bioinformatic and machine learning analysis showed that ZNF143 was a COPD-related gene. ZNF143 expression was significantly upregulated in COPD and is a potential diagnostic biomarker in COPD with AUC > 0.85. ZNF143 expression was significantly upregulated in lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). ZNF143 expression levels were significantly higher in LUAD patients with COPD relative to the levels in patients only with LUAD. Upregulation of ZNF143 in patients with comorbidity of NSCLC and COPD was further confirmed by qRT-PCR analysis. High expression of ZNF143 was significantly correlated with advanced TNM stage in LUSC. High ZNF143 expression was associated with activated TICs in both LUAD and LUSC samples. Moreover, ZNF143 expression was significantly correlated with the levels of several known predictors of immunotherapy efficacy, including PD-L1, PD-L2, TMB and TIDE in NSCLC. Conclusion ZNF143 is a novel COPD biomarker. High expression level of ZNF143 is associated with immune microenvironment and high risk of progression of COPD to NSCLC.
Collapse
Affiliation(s)
- Zhenxing Feng
- Department of Radiology, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Yan Yin
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Bin Liu
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Lei Wang
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Miaomiao Chen
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Yue Zhu
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
| | - Daqiang Sun
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
- Daqiang Sun, Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China, Email
| | - Jianwen Qin
- Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China
- Correspondence: Jianwen Qin, Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin, 300222, People’s Republic of China, Email
| |
Collapse
|