1
|
Liu D, Wang X, Qian F, Ye D, Deng X, Fang L. DLAT promotes triple-negative breast cancer progression via YAP1 activation. Cancer Biol Ther 2024; 25:2421578. [PMID: 39460738 PMCID: PMC11520541 DOI: 10.1080/15384047.2024.2421578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent malignant tumor in women globally. Triple-negative breast cancer (TNBC) represents the most malignant and invasive subtype of BC. New therapeutic targets are urgently needed for TNBC owing to its receptor expression characteristics, which render it insensitive to traditional targeted and endocrine therapies for BC. The role and mechanisms of dihydrolipoamide S-acetyltransferase (DLAT) as a crucial molecule in glycometabolism and cuproptosis-related biological processes in tumors remain to be explored. METHODS DLAT expression was investigated using bioinformatics methods and quantitative real-time polymerase chain reaction. Subsequently, the MTT assay, colony formation assay, and migration-invasion assay were performed to validate the effect of DLAT on TNBC cell viability, proliferation, and migration. Cytoplasmic-nuclear separation experiments, western blot analysis, and co-immunoprecipitation assays were performed to elucidate the underlying molecular mechanisms. RESULTS This study revealed a robust correlation between elevated DLAT expression in BC and unfavorable prognosis in patients, with higher expression of DLAT compared to other subtypes in TNBC. Functional cytology experiments indicated that DLAT plays a tumor-promoting role in TNBC. Mechanistic studies showed that DLAT directly interacts with YAP1, leading to the dephosphorylation and activation of YAP1 and its increased nuclear translocation, thereby transcriptionally activating and regulating downstream oncogenes, promoting the malignant phenotype of TNBC. Rescue experiments indicated that DLAT promotes the malignant behavior of TNBC through a YAP1-dependent pathway. CONCLUSIONS Our research unveiled the significant involvement of DLAT in TNBC, along with the potential for modulating DLAT/YAP1 activity as a targeted treatment strategy for TNBC.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuehui Wang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fengyuan Qian
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Danrong Ye
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaochong Deng
- Department of Breast Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Parambil ST, Antony GR, Littleflower AB, Subhadradevi L. The molecular crosstalk of the hippo cascade in breast cancer: A potential central susceptibility. Biochimie 2024; 222:132-150. [PMID: 38494109 DOI: 10.1016/j.biochi.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
The incidence of breast cancer is perpetually growing globally, and it remains a major public health problem and the leading cause of mortality in women. Though the aberrant activities of the Hippo pathway have been reported to be associated with cancer, constructive knowledge of the pathway connecting the various elements of breast cancer remains to be elucidated. The Hippo transducers, yes-associated protein (YAP) and transcriptional co-activator with PDZ binding motif (TAZ), are reported to be either tumor suppressors, oncogenes, or independent prognostic markers in breast cancer. Thus, there is further need for an explicative evaluation of the dilemma with this molecular contribution of Hippo transducers in modulating breast malignancy. In this review, we summarize the intricate crosstalk of the Hippo pathway in different aspects of breast malignancy, including stem-likeness, cellular signaling, metabolic adaptations, tumor microenvironment, and immune responses. The collective data shows that Hippo transducers play an indispensable role in mammary tumor formation, progression, and dissemination. However, the cellular functions of YAP/TAZ in tumorigenesis might be largely dependent on the mechanical and biophysical cues they interact with, as well as on the cell phenotype. This review provides a glimpse into the plausible biological contributions of the cascade to the inward progression of breast carcinoma and suggests potential therapeutic prospects.
Collapse
Affiliation(s)
- Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, 695011, Kerala, India.
| |
Collapse
|
3
|
Chai XX, Liu J, Yu TY, Zhang G, Sun WJ, Zhou Y, Ren L, Cao HL, Yin DC, Zhang CY. Recent progress of mechanosensitive mechanism on breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:1-16. [PMID: 37793504 DOI: 10.1016/j.pbiomolbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.
Collapse
Affiliation(s)
- Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yan Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, Zhejiang, PR China
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, School of Pharmacy, Xi'an Medical University, Xi'an, 710021, Shaanxi, PR China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
4
|
Sharygin D, Koniaris LG, Wells C, Zimmers TA, Hamidi T. Role of CD14 in human disease. Immunology 2023; 169:260-270. [PMID: 36840585 PMCID: PMC10591340 DOI: 10.1111/imm.13634] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
The cell surface antigen CD14 is primarily understood to act as a co-receptor for toll-like receptors (TLRs) to activate innate immunity responses to pathogens and tissue injury in macrophages and monocytes. However, roles for CD14 are increasingly being uncovered in disease responses in epithelial and endothelial cells. Consistent with these broader functions, CD14 expression is altered in a variety of non-immune cell types in response to a several of disease states. Moreover, soluble CD14 activated by factors from both pathogens and tissue damage may initiate signalling in a variety of non-immune cells. This review examined the current understanding CD14 in innate immunity as well as its potential functions in nonimmune cells and associated human diseases.
Collapse
Affiliation(s)
- Daniel Sharygin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Chemistry, Massachusetts institute of technology, Cambridge, MA, USA
| | - Leonidas G. Koniaris
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clark Wells
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA
| | - Tewfik Hamidi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
5
|
Brauer BL, Wiredu K, Gerber SA, Kettenbach AN. Evaluation of Quantification and Normalization Strategies for Phosphoprotein Phosphatase Affinity Proteomics: Application to Breast Cancer Signaling. J Proteome Res 2023; 22:47-61. [PMID: 36448918 PMCID: PMC10625046 DOI: 10.1021/acs.jproteome.2c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Accurate quantification of proteomics data is essential for revealing and understanding biological signaling processes. We have recently developed a chemical proteomic strategy termed phosphatase inhibitor beads and mass spectrometry (PIB-MS) to investigate endogenous phosphoprotein phosphatase (PPP) dephosphorylation signaling. Here, we compare the robustness and reproducibility of status quo quantification methods for optimal performance and ease of implementation. We then apply PIB-MS to an array of breast cancer cell lines to determine differences in PPP signaling between subtypes. Breast cancer, a leading cause of cancer death in women, consists of three main subtypes: estrogen receptor-positive (ER+), human epidermal growth factor receptor two positive (HER2+), and triple-negative (TNBC). Although there are effective treatment strategies for ER+ and HER2+ subtypes, tumors become resistant and progress. Furthermore, TNBC has few targeted therapies. Therefore, there is a need to identify new approaches for treating breast cancers. Using PIB-MS, we distinguished TNBC from non-TNBC based on subtype-specific PPP holoenzyme composition. In addition, we identified an increase in PPP interactions with Hippo pathway proteins in TNBC. These interactions suggest that phosphatases in TNBC play an inhibitory role on the Hippo pathway and correlate with increased expression of YAP/TAZ target genes both in TNBC cell lines and in TNBC patients.
Collapse
Affiliation(s)
- Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kwame Wiredu
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Scott A. Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH
- Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH
| |
Collapse
|
6
|
Bhavnagari H, Raval A, Shah F. Deciphering Potential Role of Hippo Signaling Pathway in Breast Cancer: A Comprehensive Review. Curr Pharm Des 2023; 29:3505-3518. [PMID: 38141194 DOI: 10.2174/0113816128274418231215054210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer is a heterogeneous disease and a leading malignancy around the world. It is a vital cause of untimely mortality among women. Drug resistance is the major challenge for effective cancer therapeutics. In contrast, cancer stem cells (CSCs) are one of the reasons for drug resistance, tumor progression, and metastasis. The small population of CSCs present in each tumor has the ability of self-renewal, differentiation, and tumorigenicity. CSCs are often identified and enriched using a variety of cell surface markers (CD44, CD24, CD133, ABCG2, CD49f, LGR5, SSEA-3, CD70) that exert their functions by different regulatory networks, i.e., Notch, Wnt/β-catenin, hedgehog (Hh), and Hippo signaling pathways. Particularly the Hippo signaling pathway is the emerging and very less explored cancer stem cell pathway. Here, in this review, the Hippo signaling molecules are elaborated with respect to their ability of stemness as epigenetic modulators and how these molecules can be targeted for better cancer treatment and to overcome drug resistance.
Collapse
Affiliation(s)
- Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Raval
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Yang H, Xue M, Su P, Zhou Y, Li X, Li Z, Xia Y, Zhang C, Fu M, Zheng X, Luo G, Wei T, Wang X, Ding Y, Zhu J, Zhuang T. RNF31 represses cell progression and immune evasion via YAP/PD-L1 suppression in triple negative breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:364. [PMID: 36581998 PMCID: PMC9801641 DOI: 10.1186/s13046-022-02576-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently genome-based studies revealed that the abnormality of Hippo signaling is pervasive in TNBC and played important role in cancer progression. RING finger protein 31 (RNF31) comes to RING family E3 ubiquitin ligase. Our previously published studies have revealed RNF31 is elevated in ER positive breast cancer via activating estrogen signaling and suppressing P53 pathway. METHODS We used several TNBC cell lines and xenograft models and performed immuno-blots, QPCR, in vivo studies to investigate the function of RNF31 in TNBC progression. RESULT Here, we demonstrate that RNF31 plays tumor suppressive function in triple negative breast cancer (TNBC). RNF31 depletion increased TNBC cell proliferation and migration in vitro and in vitro. RNF31 depletion in TNBC coupled with global genomic expression profiling indicated Hippo signaling could be the potential target for RNF31 to exert its function. Further data showed that RNF31 depletion could increase the level of YAP protein, and Hippo signaling target genes expression in several TNBC cell lines, while clinical data illustrated that RNF31 expression correlated with longer relapse-free survival in TNBC patients and reversely correlated with YAP protein level. The molecular biology assays implicated that RNF31 could associate with YAP protein, facilitate YAP poly-ubiquitination and degradation at YAP K76 sites. Interestingly, RNF31 could also repress PDL1 expression and sensitive TNBC immunotherapy via inhibiting Hippo/YAP/PDL1 axis. CONCLUSIONS Our study revealed the multi-faced function of RNF31 in different subtypes of breast malignancies, while activation RNF31 could be a plausible strategy for TNBC therapeutics.
Collapse
Affiliation(s)
- Huijie Yang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Min Xue
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province People’s Republic of China
| | - Yan Zhou
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xin Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Zhongbo Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Yan Xia
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Chenmiao Zhang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Mingxi Fu
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Xiuxia Zheng
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Guosheng Luo
- grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Tian Wei
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xinxing Wang
- grid.412633.10000 0004 1799 0733Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052 People’s Republic of China
| | - Yinlu Ding
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Jian Zhu
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Ting Zhuang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China ,grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| |
Collapse
|
8
|
Lee Y, Bae SJ, Eun NL, Ahn SG, Jeong J, Cha YJ. Correlation of Yes-Associated Protein 1 with Stroma Type and Tumor Stiffness in Hormone-Receptor Positive Breast Cancer. Cancers (Basel) 2022; 14:cancers14204971. [PMID: 36291755 PMCID: PMC9599900 DOI: 10.3390/cancers14204971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary YAP1 is an oncogene that can be activated by matrix stiffness, as it can act as a mechanotransducer. So far, only in vitro studies regarding YAP1 activation and matrix stiffness are present. We confirmed the activation of YAP1 in breast cancer using human breast cancer tissue and immunohistochemistry. Tumor stiffness was quantified by shear-wave elastography. Nuclear localization of YAP1 showed correlation with tumor stiffness in hormone-receptor positive (HR+) breast cancer. Also, tumors with non-collagen-type stroma showed an association between YAP1 expression and tumor stiffness. YAP1 expression, along with tumor stiffness, may serve as a prognostic candidate in HR+ breast cancer. Abstract (1) Background: Yes-associated protein 1 (YAP1) is an oncogene activated under the dysregulated Hippo pathway. YAP1 is also a mechanotransducer that is activated by matrix stiffness. So far, there are no in vivo studies on YAP1 expression related to stiffness. We aimed to investigate the association between YAP1 activation and tumor stiffness in human breast cancer samples, using immunohistochemistry and shear-wave elastography (SWE). (2) Methods: We included 488 patients with treatment-naïve breast cancer. Tumor stiffness was measured and the mean, maximal, and minimal elasticity values and elasticity ratios were recorded. Nuclear YAP1 expression was evaluated by immunohistochemistry and tumor-infiltrating lymphocytes (TILs); tumor-stroma ratio (TSR) and stroma type of tumors were also evaluated. (3) Results: Tumor stiffness was higher in tumors with YAP1 positivity, low TILs, and high TSR and was correlated with nuclear YAP1 expression; this correlation was observed in hormone receptor positive (HR+) tumors, as well as in tumors with non-collagen-type stroma. (4) Conclusions: We confirmed the correlation between nuclear YAP1 expression and tumor stiffness, and nuclear YAP1 expression was deemed a prognostic candidate in HR+ tumors combined with SWE-measured tumor stiffness.
Collapse
Affiliation(s)
- Yangkyu Lee
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Soong June Bae
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Na Lae Eun
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Sung Gwe Ahn
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Joon Jeong
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Institute of Breast Cancer Precision Medicine, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3540
| |
Collapse
|
9
|
Residual Tumor Patterns of Breast Cancer on MRI after Neo-Adjuvant Chemotherapy: Impact on Clinicopathologic Factors and Prognosis. Diagnostics (Basel) 2022; 12:diagnostics12102294. [PMID: 36291984 PMCID: PMC9600236 DOI: 10.3390/diagnostics12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Residual breast cancer after neoadjuvant chemotherapy (NAC) could have a variable image pattern on a follow-up breast magnetic resonance image (MRI). In this study, we compared the clinical outcome of breast cancer patients with different residual tumor patterns (RTP) on a breast MRI after NAC. (2) Methods: A total of 91 patients with breast cancer who received NAC and subsequent curative surgery were selected. All included patient had residual breast cancer after NAC and showed a partial response on a breast MRI. Pre- and post-treatment were reviewed by an experienced radiologist to evaluate different RTP, and classified into two groups: concentric and scattered patterns. The clinicopathologic parameters and survival outcomes [recurrence-free survival (RFS) and distant metastasis-free survival (DMFS)] were analyzed according to different RTP. (3) Results: Patients with a scattered pattern had a larger extent of pre-treated non-mass enhancement and more frequently received total mastectomy. With a median follow-up period of 37 months, RTP were not significantly associated with RFS or DMFS. (4) Conclusions: In the patients with residual breast cancer after NAC, RTP on an MRI had no effect on the patients’ clinical outcome. The curative resection of the tumor bed and securing the negative resection margins appear to be important in the treatment of patients with residual breast cancer after NAC.
Collapse
|
10
|
Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers. Proc Natl Acad Sci U S A 2022; 119:e2123134119. [PMID: 35858357 PMCID: PMC9303858 DOI: 10.1073/pnas.2123134119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Breast cancer is the most frequent malignancy in women worldwide. Basal-like breast cancer (BLBC) is the most aggressive form of this disease, and patients have a poor prognosis. Here, we present data suggesting that the Hippo-transcriptional coactivator with PDZ-binding motif (TAZ) pathway is a key driver of BLBC onset and progression. Deletion of Mob1a/b in mouse mammary luminal epithelium induced rapid and highly reproducible mammary tumorigenesis that was dependent on TAZ but not yes-associated protein 1 (YAP1). In situ early-stage BLBC-like malignancies developed in mutant animals by 2 wk of age, and invasive BLBC appeared by 4 wk. In a human estrogen receptor+ luminal breast cancer cell line, TAZ hyperactivation skewed the features of these luminal cells to the basal phenotype, consistent with the aberrant TAZ activation frequently observed in human precancerous BLBC lesions. TP53 mutation is rare in human precancerous BLBC but frequent in invasive BLBC. Addition of Trp53 deficiency to our Mob1a/b-deficient mouse model enhanced tumor grade and accelerated cancer progression. Our work justifies targeting the Hippo-TAZ pathway as a therapy for human BLBC, and our mouse model represents a powerful tool for evaluating candidate agents.
Collapse
|
11
|
Analysis of Yes-Associated Protein-1 (YAP1) Target Gene Signature to Predict Progressive Breast Cancer. J Clin Med 2022; 11:jcm11071947. [PMID: 35407556 PMCID: PMC8999906 DOI: 10.3390/jcm11071947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancers are treated according to the ER/PR or HER2 expression and show better survival outcomes with targeted therapy. Triple-negative breast cancers (TNBCs) with a lack of expression of ER/PR and HER2 are treated with systemic therapy with unpredictable responses and outcomes. It is essential to investigate novel markers to identify targeted therapies for TNBC. One such marker is YAP1, a transcription co-activator protein that shows association with poor prognosis of breast cancer. YAP1 transcriptionally regulates the expression of genes that drive the oncogenic phenotypes. Here, we assess a potential YAP target gene signature to predict a progressive subset of breast tumors from METABRIC and TCGA datasets. YAP1 target genes were shortlisted based on expression correlation and concordance with YAP1 expression and significant association with survival outcomes of patients. Hierarchical clustering was performed for the shortlisted genes. The utility of the clustered genes was assessed by survival analysis to identify a recurring subset. Expression of the shortlisted target genes showed significant association with survival outcomes of HER2-positive and TNBC subset in both datasets. The shortlisted genes were verified using an independent dataset. Further validation using IHC can prove the utility of this potential prognostic signature to identify a recurrent subset of HER2-positive and TNBC subtypes.
Collapse
|
12
|
Cha YJ, Kim D, Bae SJ, Ahn SG, Jeong J, Cho MK, Paik PS, Yoo TK, Park WC, Yoon CI. The association between the expression of nuclear Yes-associated protein 1 (YAP1) and p53 protein expression profile in breast cancer patients. PLoS One 2021; 16:e0250986. [PMID: 33970925 PMCID: PMC8109764 DOI: 10.1371/journal.pone.0250986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/19/2021] [Indexed: 01/17/2023] Open
Abstract
Background Yes-associated protein 1 (YAP1) is a key effector molecule regulated by the Hippo pathway and described as a poor prognostic factor in breast cancer. Tumor protein 53 (TP53) mutation is well known as a biomarker related to poor survival outcomes. So far clinical characteristics and survival outcome according to YAP1 and TP53 mutation have been poorly identified in breast cancer. Patients and methods Retrospectively, 533 breast tumor tissues were collected at the Seoul St Mary’s hospital and Gangnam Severance Hospital from 1992 to 2017. Immunohistochemistry with YAP1 and p53 specific antibodies were performed, and the clinical data were analyzed. Results Mutant p53 pattern was associated with aggressive tumor features and advanced anatomical stage. Inferior overall survival (OS) and recurrence free survival (RFS) were related with mutant p53 pattern cases with low nuclear YAP1 expression (P = 0.0009 and P = 0.0011, respectively). Multivariate analysis showed that mutant p53 pattern was an independent prognostic marker for OS [hazard ratios (HR): 2.938, 95% confidence intervals (CIs): 1.028–8.395, P = 0.044] and RFS (HR: 1.842, 95% CIs: 1.026–3.304). However, in cases with high nuclear YAP1 expression, there were no significantly difference in OS and RFS according to p53 staining pattern. Conclusion We found that mutant p53 pattern is a poor prognostic biomarker in breast tumor with low nuclear YAP1 expression. Our findings suggest that interaction between nuclear YAP1 and p53 expression pattern impact survival outcomes.
Collapse
Affiliation(s)
- Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dooreh Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Soong June Bae
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Gwe Ahn
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Jeong
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Cho
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Pill Sun Paik
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Tae-Kyung Yoo
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
| | - Chang Ik Yoon
- Division of Breast Surgery, Department of Surgery, Seoul St Mary’s Hospital, College of Medicine, The Catholic University of Seoul, Seoul, Korea
- * E-mail:
| |
Collapse
|