1
|
Barrett F, Quirk S, Stenhouse K, Long K, Roumeliotis M, Lee S, Souza R, McGeachy P. Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients. Biomed Phys Eng Express 2025; 11:025013. [PMID: 39642394 DOI: 10.1088/2057-1976/ad9b30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Background and purpose. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.Materials and methods. Anatomic distances were extracted from a single-institution dataset of free breathing (FB) CT scans from locoregional right-sided breast cancer patients. Models were developed using combinations of anatomic distances and ML classification algorithms (gradient boosting, k-nearest neighbors, logistic regression, random forest, and support vector machine) and optimized over 100 iterations using stratified 5-fold cross-validation. Models were grouped by the number of anatomic distances used during development; those with the highest validation accuracy were selected as final models. Final models were compared based on their predictive ability, measurement collection efficiency, and robustness to simulated user error during measurement collection.Results. This retrospective study included 238 patients treated between 2016 and 2021. Model development ended once eight anatomic distances were included, and the validation accuracy plateaued. The best performing model used logistic regression with four anatomic distances achieving 80.5% average testing accuracy, with minimal false negatives and positives (<27%). The anatomic distances required for prediction were collected within 3 min and were robust to simulated user error during measurement collection, changing accuracy by <5%.Conclusion. Our logistic regression model using four anatomic distances provided the best balance between efficiency, robustness, and ability to predict if DIBH was needed for locoregional right-sided breast cancer patients.
Collapse
Affiliation(s)
- Fletcher Barrett
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Sarah Quirk
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Kailyn Stenhouse
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Karen Long
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Michael Roumeliotis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, United States of America
| | - Sangjune Lee
- Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Roberto Souza
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| | - Philip McGeachy
- Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Fionda B, Placidi E, de Ridder M, Strigari L, Patarnello S, Tanderup K, Hannoun-Levi JM, Siebert FA, Boldrini L, Antonietta Gambacorta M, De Spirito M, Sala E, Tagliaferri L. Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients' needs. Clin Transl Radiat Oncol 2024; 49:100865. [PMID: 39381628 PMCID: PMC11459626 DOI: 10.1016/j.ctro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
Collapse
Affiliation(s)
- Bruno Fionda
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Elisa Placidi
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Mischa de Ridder
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Patarnello
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean-Michel Hannoun-Levi
- Department of Radiation Oncology, Antoine Lacassagne Cancer Centre, University of Côte d’Azur, Nice, France
| | - Frank-André Siebert
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
3
|
Chen J, Qiu RL, Wang T, Momin S, Yang X. A Review of Artificial Intelligence in Brachytherapy. ARXIV 2024:arXiv:2409.16543v1. [PMID: 39398213 PMCID: PMC11469420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Artificial intelligence (AI) has the potential to revolutionize brachytherapy's clinical workflow. This review comprehensively examines the application of AI, focusing on machine learning and deep learning, in facilitating various aspects of brachytherapy. We analyze AI's role in making brachytherapy treatments more personalized, efficient, and effective. The applications are systematically categorized into seven categories: imaging, preplanning, treatment planning, applicator reconstruction, quality assurance, outcome prediction, and real-time monitoring. Each major category is further subdivided based on cancer type or specific tasks, with detailed summaries of models, data sizes, and results presented in corresponding tables. This review offers insights into the current advancements, challenges, and the impact of AI on treatment paradigms, encouraging further research to expand its clinical utility.
Collapse
Affiliation(s)
- Jingchu Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
- School of Mechanical Engineering, Georgia Institute of Technology, GA, Atlanta, USA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shadab Momin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| |
Collapse
|
4
|
Stenhouse K, Roumeliotis M, Ciunkiewicz P, Martell K, Quirk S, Banerjee R, Doll C, Phan T, Yanushkevich S, McGeachy P. Prospective validation of a machine learning model for applicator and hybrid interstitial needle selection in high-dose-rate (HDR) cervical brachytherapy. Brachytherapy 2024; 23:368-376. [PMID: 38538415 DOI: 10.1016/j.brachy.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To Demonstrate the clinical validation of a machine learning (ML) model for applicator and interstitial needle prediction in gynecologic brachytherapy through a prospective clinical study in a single institution. METHODS The study included cervical cancer patients receiving high-dose-rate brachytherapy using intracavitary (IC) or hybrid interstitial (IC/IS) applicators. For each patient, the primary radiation oncologist contoured the high-risk clinical target volume on a pre-brachytherapy MRI, indicated the approximate applicator location, and made a clinical determination of the first fraction applicator. A pre-trained ML model predicted the applicator and IC/IS needle arrangement using tumor geometry. Following the first fraction, ML and radiation oncologist predictions were compared and a replanning study determined the applicator providing optimal organ-at-risk (OAR) dosimetry. The ML-predicted applicator and needle arrangement and the clinical determination were compared to this dosimetric ground truth. RESULTS Ten patients were accrued from December 2020 to October 2022. Compared to the dosimetrically optimal applicator, both the radiation oncologist and ML had an accuracy of 70%. ML demonstrated better identification of patients requiring IC/IS applicators and provided balanced IC and IC/IS predictions. The needle selection model achieved an average accuracy of 82.5%. ML-predicted needle arrangements matched or improved plan quality when compared to clinically selected arrangements. Overall, ML predictions led to an average total improvement of 2.0 Gy to OAR doses over three treatment fractions when compared to clinical predictions. CONCLUSION In the context of a single institution study, the presented ML model demonstrates valuable decision-support for the applicator and needle selection process with the potential to provide improved dosimetry. Future work will include a multi-center study to assess generalizability.
Collapse
Affiliation(s)
- Kailyn Stenhouse
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada.
| | - Michael Roumeliotis
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD.
| | - Philip Ciunkiewicz
- Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Sarah Quirk
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA
| | - Robyn Banerjee
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Corinne Doll
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Tien Phan
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Svetlana Yanushkevich
- Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Philip McGeachy
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada; Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta, Canada; Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Recent Applications of Artificial Intelligence in Radiotherapy: Where We Are and Beyond. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent decades, artificial intelligence (AI) tools have been applied in many medical fields, opening the possibility of finding novel solutions for managing very complex and multifactorial problems, such as those commonly encountered in radiotherapy (RT). We conducted a PubMed and Scopus search to identify the AI application field in RT limited to the last four years. In total, 1824 original papers were identified, and 921 were analyzed by considering the phase of the RT workflow according to the applied AI approaches. AI permits the processing of large quantities of information, data, and images stored in RT oncology information systems, a process that is not manageable for individuals or groups. AI allows the iterative application of complex tasks in large datasets (e.g., delineating normal tissues or finding optimal planning solutions) and might support the entire community working in the various sectors of RT, as summarized in this overview. AI-based tools are now on the roadmap for RT and have been applied to the entire workflow, mainly for segmentation, the generation of synthetic images, and outcome prediction. Several concerns were raised, including the need for harmonization while overcoming ethical, legal, and skill barriers.
Collapse
|