1
|
Joshi A, Bhaskar N, Pearson JD. Neuroendocrine Transformation as a Mechanism of Resistance to Targeted Lung Cancer Therapies: Emerging Mechanisms and Their Therapeutic Implications. Cancers (Basel) 2025; 17:260. [PMID: 39858043 PMCID: PMC11763869 DOI: 10.3390/cancers17020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, highlighting a major clinical challenge. Lung cancer is broadly classified into two histologically distinct subtypes, termed small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). Identification of various oncogenic drivers of NSCLC has facilitated the development of targeted therapies that have dramatically improved patient outcomes. However, acquired resistance to these targeted therapies is common, which ultimately results in patient relapse. Several on-target and off-target resistance mechanisms have been described for targeted therapies in NSCLC. One common off-target mechanism of resistance to these therapies is histological transformation of the initial NSCLC into SCLC, a highly aggressive form of lung cancer that exhibits neuroendocrine histology. This mechanism of resistance presents a significant clinical challenge, since there are very few treatments available for these relapsed patients. Although the phenomenon of NSCLC-to-SCLC transformation was described almost 20 years ago, only recently have we begun to understand the mechanisms underlying this therapy-driven response. These recent discoveries will be key to identifying novel biomarkers and therapeutic strategies to improve outcomes of patients that undergo NSCLC-to-SCLC transformation. Here, we highlight these recent advances and discuss the potential therapeutic strategies that they have uncovered to target this mechanism of resistance.
Collapse
Affiliation(s)
- Asim Joshi
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Nivitha Bhaskar
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Joel D. Pearson
- Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada; (A.J.); (N.B.)
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
2
|
Zhang J, Zeng X, Guo Q, Sheng Z, Chen Y, Wan S, Zhang L, Zhang P. Small cell lung cancer: emerging subtypes, signaling pathways, and therapeutic vulnerabilities. Exp Hematol Oncol 2024; 13:78. [PMID: 39103941 DOI: 10.1186/s40164-024-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/27/2024] [Indexed: 08/07/2024] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant cancer characterized by early metastasis, rapid tumor growth and poor prognosis. In recent decades, the epidemiology, initiation and mutation characteristics of SCLC, as well as abnormal signaling pathways contributing to its progression, have been widely studied. Despite extensive investigation, fewer drugs have been approved for SCLC. Recent advancements in multi-omics studies have revealed diverse classifications of SCLC that are featured by distinct characteristics and therapeutic vulnerabilities. With the accumulation of SCLC samples, different subtypes of SCLC and specific treatments for these subtypes were further explored. The identification of different molecular subtypes has opened up novel avenues for the treatment of SCLC; however, the inconsistent and uncertain classification of SCLC has hindered the translation from basic research to clinical applications. Therefore, a comprehensives review is essential to conclude these emerging subtypes and related drugs targeting specific therapeutic vulnerabilities within abnormal signaling pathways. In this current review, we summarized the epidemiology, risk factors, mutation characteristics of and classification, related molecular pathways and treatments for SCLC. We hope that this review will facilitate the translation of molecular subtyping of SCLC from theory to clinical application.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| | - Xiaoping Zeng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qiji Guo
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Zhenxin Sheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Shiyue Wan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lele Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Yang Y, Fan S. Small cell lung cancer transformations from non-small cell lung cancer: Biological mechanism and clinical relevance. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:42-47. [PMID: 39170959 PMCID: PMC11332903 DOI: 10.1016/j.pccm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 08/23/2024]
Abstract
Lung cancer is a leading cause of cancer deaths worldwide, consisting of two major histological subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). In some cases, NSCLC patients may undergo a histological transformation to SCLC during clinical treatments, which is associated with resistance to targeted therapy, immunotherapy, or chemotherapy. The review provides a comprehensive analysis of SCLC transformation from NSCLC, including biological mechanism, clinical relevance, and potential treatment options after transformation, which may give a better understanding of SCLC transformation and provide support for further research to define better therapy options.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
4
|
Zeng J, Ding X, Ding J, Wang X. Histological transformation into SCLC: An important resistance mechanism of NSCLC upon immunotherapy. Front Immunol 2023; 14:1275957. [PMID: 38022621 PMCID: PMC10646212 DOI: 10.3389/fimmu.2023.1275957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
The phenomenon of histological transformation has been widely reported in advanced non-small cell lung cancer (NSCLC) with EGFR mutations following the failure of EGFR-TKI treatment. Recent evidence suggests that similar histological changes can also occur in advanced NSCLC without driver gene mutations after developing resistance to immunotherapy. In this review, it was found that 66.7% of cases with immunotherapy-induced histological transformation were classified as lung squamous cell carcinoma (LSCC), while histological conversion into lung adenocarcinoma (LUAD) without EGFR or ALK gene mutations has rarely been reported. There have been sporadic reports on the occurrence of mutual transformation between LUAD and LSCC. The histological conversion from NSCLC into small cell lung cancer (SCLC) appears to be significantly underestimated, likely due to the infrequency of re-biopsy following the development of immunotherapy resistance. Several studies have reported a close association between the transformation and mutations at TP53 and the RB1 splice site, as well as the loss of an FBXW7 mutation. However, the exact mechanisms underlying this conversion remain unclear. Currently, there is a lack of guidelines for the management of transformed SCLC from NSCLC following immunotherapy, with chemotherapy being the most commonly employed treatment approach.
Collapse
Affiliation(s)
- Jiao Zeng
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, China
- Graduate Department, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xinjing Ding
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianghua Ding
- Department of Hematology & Oncology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, China
| | - Xin Wang
- Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
5
|
Zhang SL, Zhang CY, Chen YQ, Li YF, Xie Z, Zhang XC, Zhou Q, Zhong WZ, Huang J, Sun H, Zheng MY, Xiao FM, Yan HH, Lu DX, Lv ZY, Wu YL, Chen HJ, Yang JJ. Expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed small cell lung cancer. J Thorac Dis 2023; 15:4620-4635. [PMID: 37868836 PMCID: PMC10586967 DOI: 10.21037/jtd-23-161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 10/24/2023]
Abstract
Background The transformation of epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma (LUAD) into small cell lung cancer (SCLC) accounts for 3-14% of the resistance mechanism to EGFR tyrosine kinase inhibitors (TKIs). At present, there is no relevant research to explore the dynamic expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed SCLC/neuroendocrine carcinoma (NEC). Methods Genetic analysis and protein level analysis by next-generation sequencing (NGS), Whole-exome sequencing (WES) and immunohistochemistry were performed to explore expression of EGFR-mutant proteins and genomic evolution in EGFR-mutant transformed SCLC. The research used three patient-derived organoids (PDOs) to explore the efficacy of combo [chemotherapy (chemo) plus TKI or bevacizumab] treatment. According to the subsequent treatment regimens after SCLC/NEC transformation, 35 patients were divided into chemo (n=21) and combo (n=14) groups. Results EGFR L858R and EGFR E746-750 del protein expression by immunohistochemistry was 80.0% (4/5) and 100% (6/6), respectively (P=0.455) in initially-transformed tissues. Meanwhile, EGFR-mutant proteins were expressed in 85.7% (6/7) of dynamic rebiopsy tissues or effusion samples after the first transformation. Then, by the pathway enrichment analysis of tissue and plasma NGS, the EGFR-related pathways were still activated after SCLC/NEC transformation. Moreover, WES analysis revealed that transformed SCLC shared a common clonal origin from the baseline LUAD. The drug sensitivity of three PDOs demonstrated potent anti-cancer activity of EGFR-TKIs plus chemo, compared with chemo or TKI alone. There were significant differences in objective response rate (ORR) between the combo and chemo groups [42.9 % vs. 4.8%, P=0.010, 95% confidence interval (CI): 1.5-145.2]. Furthermore, the median post-transformation progression-free survival (pPFS) was significantly prolonged in the combo group, with 5.4 (95% CI: 3.4-7.4) versus 3.5 (95% CI: 2.7-4.3, P=0.012) months. Conclusions EGFR 19del or L858R-mutant proteins could be constantly expressed, and EGFR pathway still existed in EGFR-mutant transformed SCLC/NEC with a common clonal origin from the baseline LUAD. Taking together, these molecular characteristics potentially favored clinical efficacy in transformed SCLC/NEC treated with the combo regimen.
Collapse
Affiliation(s)
- Shi-Ling Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chan-Yuan Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Qing Chen
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Fa Li
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Xie
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xu-Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hao Sun
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ming-Ying Zheng
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fa-Man Xiao
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong-Hong Yan
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dan-Xia Lu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Yi Lv
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hua-Jun Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jin-Ji Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Wang D, Ye W, Chen D, Shi Q, Ma D. Transformation of Lung Squamous Cell Carcinoma to Small Cell Lung Cancer After Immunotherapy Resistance: A Case Report. Cancer Manag Res 2023; 15:803-808. [PMID: 37583652 PMCID: PMC10424693 DOI: 10.2147/cmar.s420485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with epidermal growth factor (EGFR) receptor tyrosine kinase inhibitors (TKIs) is a relatively common phenomenon. However, transformation of non-small cell lung cancer (NSCLC) to SCLC following treatment with immunotherapy is very rare. Here, we report a case of a 56-year-old patient diagnosed with driver gene mutation-negative lung squamous cell carcinoma (SCC). He received four cycles of immunotherapy with sugemalimab and chemotherapy with albumin paclitaxel in combination with carboplatin, and a partial response was achieved. Subsequently, the patient received 5 cycles of immunotherapy with sugemalimab. However, he developed rapid progression of mediastinal lymph nodes, and biopsy results showed transformation to SCLC. His tumor did not respond to the next line of carboplatin combined with etoposide, and he died six months after the discovery of SCLC transformation. In conclusion, SCLC transformation is also an important resistance mechanism for lung SCC patients treated with immunotherapy and predicts a very poor outcome. Repeat biopsy is needed for advanced lung SCC that has progressed with immunotherapy.
Collapse
Affiliation(s)
- Diming Wang
- Department of Oncology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
| | - Wei Ye
- Department of Pathology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
| | - Dongmei Chen
- Department of Oncology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
| | - Qingming Shi
- Department of Oncology, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
| | - Dongchun Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, 230022, People’s Republic of China
| |
Collapse
|
7
|
Liu H, Chen LH, Zhang ZH, Wang N, Zhuang SH, Chen H, Du J, Pang LJ, Qi Y. Histomorphological transformation from non-small cell lung carcinoma to small cell lung carcinoma after targeted therapy or immunotherapy: A report of two cases. Front Oncol 2022; 12:1022705. [PMID: 36439460 PMCID: PMC9683475 DOI: 10.3389/fonc.2022.1022705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2023] Open
Abstract
Molecular targeting and immunotherapy provide durable responses for advanced lung cancer clinical therapy in many patients. However, the mechanisms of occurrence of progressive disease and resistance to targeted therapy and immunotherapy have not been elucidated. Herein, we report two cases of small cell transformation of non-small cell lung cancer (NSCLC) after targeted therapy or immunotherapy. The first case was a 63-year-old female patient presenting with cough and expectoration. Left lung invasive adenocarcinoma was diagnosed after left lung tumor biopsy. After epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeted therapy for almost 2 years, disease progression and symptom aggravation were observed. Pathological and immunohistochemical staining results after biopsy revealed small cell lung cancer (SCLC). The second case was a 75-year-old male patient diagnosed with stage IV squamous cell carcinoma of the lung, who received carboplatin/paclitaxel adjuvant chemotherapy and pembrolizumab treatment with partial response. Disease progression and metastasis occurred within 15 cycles of immunotherapy. Computed tomography revealed a lower left lung tumor. Cytological examination of lung lavage fluid and biopsy under thoracoscope revealed SCLC. In conclusion, histological transformation to SCLC is a potential mechanism of NSCLC resistance to targeted therapy or immunotherapy. During treatment, clinicians should monitor serum tumor markers or genome sequencing, particularly in patients with disease progression, as this may be beneficial for early detection of SCLC transformation. Repeated biopsy can be performed if necessary, and the therapeutic regimen can be adjusted in a timely manner according to the results of molecular pathological tests for personalization and whole-process management.
Collapse
Affiliation(s)
- Hao Liu
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Li-Hong Chen
- Department of Pathology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Zhi-Hui Zhang
- Department of Thoracic Surgery, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ning Wang
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Si-Hui Zhuang
- Department of Pathology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Hao Chen
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Du
- Department of Pathology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Li-Juan Pang
- Department of Pathology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang, China
- Department of Pathology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Sato Y, Saito G, Fujimoto D. Histologic transformation in lung cancer: when one door shuts, another opens. Ther Adv Med Oncol 2022; 14:17588359221130503. [PMID: 36268218 PMCID: PMC9577078 DOI: 10.1177/17588359221130503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Histologic transformation (HT) is a major cause of drug resistance to therapy in
patients with lung cancer. HTs to small-cell lung cancer (SCLC) have been
reported frequently in patients with epidermal growth factor receptor
(EGFR)-mutated lung cancer. Although HTs have an impact on
the clinical outcomes in patients owing to a high refractoriness to treatments,
there is limited data on the prevalence, causes, mechanisms, treatment efficacy,
and future treatment strategies. In this review, we assess the literature
regarding HTs comprehensively, including those describing EGFR-tyrosine kinase
inhibitors, other molecular targeted drugs, and immune checkpoint inhibitors.
Furthermore, we discuss the mechanisms of HTs and the lineage plasticity to SCLC
and squamous cell carcinoma in lung cancer. In addition, we summarize the
treatment efficacy and future perspectives of HTs in patients with lung cancer,
and propose better management strategies for this group of patients.
Collapse
|
9
|
Ki YS, Chung KS, Lee HW, Choi JH, Tapondjou LA, Jang E, Lee KT. Pennogenin-3-O-α-L-Rhamnopyranosyl-(1→2)-[α-L-Rhamnopyranosyl-(1→3)]-β-D-Glucopyranoside (Spiroconazol A) Isolated from Dioscorea bulbifera L. var. sativa Induces Autophagic Cell Death by p38 MAPK Activation in NSCLC Cells. Pharmaceuticals (Basel) 2022; 15:ph15070893. [PMID: 35890190 PMCID: PMC9319756 DOI: 10.3390/ph15070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
In our previous study, we reported the isolation of pennogenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (spiroconazol A), a steroidal saponin, from the flowers of Dioscorea bulbifera L. var. sativa. In the present study, we aimed to investigate the effects of spiroconazol A on autophagy and its underlying mechanisms in A549 and NCI-H358 human non-small cell lung cancer (NSCLC) cells. Spiroconazol A inhibited the proliferation of NSCLC cells in a concentration- and time-dependent manner. To determine the type of programmed cell death induced by spiroconazol A, we performed a characterization of apoptosis in spiroconazol A-treated A549 cells. Our results showed that spiroconazol A significantly suppressed A549 cell viability but did not influence cell apoptosis because phosphatidylserine and caspase activation were not detected. Furthermore, spiroconazol A treatment upregulated the expression of LC3-II and autophagy-related Beclin-1 protein, suggesting that spiroconazol A induces autophagy in A549 cells. Moreover, spiroconazol A activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but did not affect the phosphorylation of Janus kinase or ERK1/2. Notably, SB203580, a p38 MAPK inhibitor, had a significant inhibitory effect on spiroconazol A-induced autophagic cell death in A549 cells. Our results indicated that spiroconazol A-induced autophagy is dependent on p38 MAPK signaling and has potential as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yo Sook Ki
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Heon-Woo Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
| | - Jung-Hye Choi
- Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
| | - Léon Azefack Tapondjou
- Department of Chemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 183, Cameroon;
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea;
- Department of Internal Medicine, Kyung Hee University Korean Medicine Hospital, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Seoul 02447, Korea; (Y.S.K.); (K.-S.C.); (H.-W.L.)
- Correspondence: ; Tel.: +82-2-961-0860
| |
Collapse
|