1
|
Deng Q, Wu L, He J, Wu F, Jiang Z. Identification of autophagy-related immune targets for enhancing immunotherapy in pancreatic cancer aggressiveness. Discov Oncol 2025; 16:382. [PMID: 40126694 PMCID: PMC11933596 DOI: 10.1007/s12672-025-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents significant challenges in oncology, with metastasis critically affecting patient outcomes. Autophagy-related genes (ARGs)'s involvement in influencing immune activity and metastasis in PC remains inadequately understood. AIM This study seeks to identify and validate five ARGs that could serve as immune targets, enhancing enhancing Pancreatic cancer metastasis (PCM)'s prognostic models and informing immunotherapy strategies. METHODS ARGs that were diffentially expressed were screened, followed by Cox regression and LASSO analyses to pinpoint five genes linked to overall survival (OS). A prognostic model was developed and validated using ROC curves. Functional analyses, including GO and KEGG, were performed to elucidate ARG mechanisms. Immune infiltration and TFs/microRNA/mRNA networks were assessed to understand ARG-immune cell interactions. Experimental validation employed real-time PCR, IHC, and Western blotting, supported by TCGA data. Functional assays explored RHEB's role in PC, particularly its interaction with LC3. RESULTS Five ARGs (CASP1, RHEB, CHMP2B, MYC, and HDAC6) were identified, contributing to a robust prognostic model where low-risk individuals showed significantly longer OS. The model demonstrated high AUC scores, indicating strong prognostic capability. CD8 T cells and Treg cells' elevated levels were observed in metastatic subjects. RHEB knockdown suppressed cancer cell proliferation and invasion, with a negative correlation between RHEB and LC3, suggesting a role in autophagy-mediated modulation of PC metastasis. CONCLUSION This study introduces a novel prognostic model incorporating five ARGs, highlighting their potential as immune targets for cancer immunotherapy. The negative correlation between RHEB and LC3 suggests a therapeutic pathway for PCM intervention, laying the groundwork for more effective anti-cancer strategies. These findings advance the identification of novel immune targets and signaling pathways, aligning with precision medicine goals in cancer treatment.
Collapse
Affiliation(s)
- Qianxi Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Linju Wu
- Department of Anesthesiology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 2621000, Sichuan, China
| | - Jin He
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
| | - Fan Wu
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
2
|
Zeljic K, Pavlovic D, Stojkovic G, Dragicevic S, Ljubicic J, Todorovic N, Nikolic A. Analysis of TNS3-203 and LRRFIP1-211 Transcripts as Oral Cancer Biomarkers. J Oral Pathol Med 2025; 54:151-160. [PMID: 39888120 DOI: 10.1111/jop.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION A recent pan-cancer transcriptome analysis indicated differential activity of alternative promoters of genes TNS3 and LRRFIP1 in head and neck squamous cell carcinoma compared to non-cancerous tissue. The promoters upregulated in head and neck squamous cell carcinoma regulate expression of transcripts TNS3-203 and LRRFIP1-211. OBJECTIVE Our aim was to investigate the biomarker potential of TNS3-203 and LRRFIP1-211 transcripts in oral cancer, the most common type of head and neck cancer. MATERIALS AND METHODS An in silico approach was used to characterize the promoters and transcripts of interest. Relative expression of TNS3-203 and LRRFIP1-211 transcripts was evaluated by qRT-PCR in a group of 46 oral cancer patients in samples of cancer and adjacent non-cancerous tissue. RESULTS TNS3-203 was significantly overexpressed in oral cancer compared with matched non-cancerous tissue, so this transcript can potentially be used as a diagnostic biomarker. There were no differences in LRRFIP1-211 level between analyzed tissues. None of the investigated transcripts has prognostic potential in oral cancer. CONCLUSION The results obtained indicate the diagnostic potential of TNS3-203, but not LRRFIP1-211 transcript and its role in oral carcinogenesis.
Collapse
Affiliation(s)
- Katarina Zeljic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dunja Pavlovic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Goran Stojkovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sandra Dragicevic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Jelena Ljubicic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| | - Nikola Todorovic
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Center Serbia, Belgrade, Serbia
| | - Aleksandra Nikolic
- Gene Regulation in Cancer Group, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia
| |
Collapse
|
3
|
Hauptman N, Pižem J, Jevšinek Skok D. AmiCa: Atlas of miRNA-gene correlations in cancer. Comput Struct Biotechnol J 2024; 23:2277-2288. [PMID: 38840833 PMCID: PMC11152612 DOI: 10.1016/j.csbj.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The increasing availability of RNA sequencing data has opened up numerous opportunities to analyze various RNA interactions, including microRNA-target interactions (MTIs). In response to the necessity for a specialized tool to study MTIs in cancer and normal tissues, we developed AmiCa (https://amica.omics.si/), a web server designed for comprehensive analysis of mature microRNA (miRNA) and gene expression in 32 cancer types. Data from 9498 tumor samples and 626 normal samples from The Cancer Genome Atlas were obtained through the Genomic Data Commons and used to calculate differential expression and miRNA-target gene (MTI) correlations. AmiCa provides data on differential expression of miRNAs/genes for cancers for which normal tissue samples were available. In addition, the server calculates and presents correlations separately for tumor and normal samples for cancers for which normal samples are available. Furthermore, it enables the exploration of miRNA/gene expression in all cancer types with different miRNA/gene expression. In addition, AmiCa includes a ranking system for genes and miRNAs that can be used to identify those that are particularly highly expressed in certain cancers compared to other cancers, facilitating targeted and cancer-specific research. Finally, the functionality of AmiCa is illustrated by two case studies.
Collapse
Affiliation(s)
- Nina Hauptman
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Slovenia
| | | |
Collapse
|
4
|
Hu Z, Lai C, Liu H, Man J, Chen K, Ouyang Q, Zhou Y. Identification and validation of screening models for breast cancer with 3 serum miRNAs in an 11,349 samples mixed cohort. Breast Cancer 2024; 31:1046-1058. [PMID: 39028497 DOI: 10.1007/s12282-024-01619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The study focuses on enhancing breast cancer (BC) prognosis through early detection, aiming to establish a non-invasive, clinically viable BC screening method using specific serum miRNA levels. METHODS Involving 11,349 participants across BC, 11 other cancer types, and control groups, the study identified serum biomarkers through feature selection and developed two BC screening models using six machine learning algorithms. These models underwent evaluation across test, internal, and external validation sets, assessing performance metrics like accuracy, sensitivity, specificity, and the area under the curve (AUC). Subgroup analysis was conducted to test model stability. RESULTS Based on the three serum miRNA biomarkers (miR-1307-3p, miR-5100, and miR-4745-5p), a BC screening model, SM4BC3miR model, was developed. This model achieved AUC performances of 0.986, 0.986, and 0.939 on the test, internal, and external sets, respectively. Furthermore, the SSM4BC model, utilizing ratio scores of miR-1307-3p/miR-5100 and miR-4745-5p/miR-5100, showed AUCs of 0.973, 0.980, and 0.953, respectively. Subgroup analyses underscored both models' robustness and stability. CONCLUSION This research introduced the SM4BC3miR and SSM4BC models, leveraging three specific serum miRNA biomarkers for breast cancer screening. Demonstrating high accuracy and stability, these models present a promising approach for early detection of breast cancer. However, their practical application and effectiveness in clinical settings remain to be further validated.
Collapse
Affiliation(s)
- Zhensheng Hu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Cong Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongze Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Jianping Man
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Kai Chen
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yinfeng Road No. 33, HaiZhu District, Guangzhou, 510260, China
| | - Qian Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yinfeng Road No. 33, HaiZhu District, Guangzhou, 510260, China.
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Záveský L, Jandáková E, Weinberger V, Minář L, Kohoutová M, Faridová AT, Slanař O. The Overexpressed MicroRNAs miRs-182, 155, 493, 454, and U6 snRNA and Underexpressed let-7c, miR-328, and miR-451a as Potential Biomarkers in Invasive Breast Cancer and Their Clinicopathological Significance. Oncology 2024; 103:112-127. [PMID: 39134012 PMCID: PMC11793102 DOI: 10.1159/000540863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice. INTRODUCTION Breast cancer comprises the leading cause of cancer-related death in women. MicroRNAs (miRNAs) have emerged as important factors with concern to carcinogenesis and have potential for use as biomarkers. METHODS This study provides a comprehensive evaluation of the microRNA expression in invasive breast carcinoma of no special type tissues compared with benign tissues via large-scale screening and the candidate-specific validation of 15 miRNAs and U6 snRNA applying qPCR and the examination of clinicopathological data. RESULTS Of the six downregulated miRNAs, let-7c was identified as the most promising miRNA biomarker and its lower expression was linked with Ki-67 positivity, luminal B versus luminal A samples, multifocality, lymph node metastasis, and inferior PFS. Of the 9 upregulated sncRNAs, the data on U6 snRNA, miR-493 and miR-454 highlighted their potential oncogenic functions. An elevated U6 snRNA expression was associated with the tumor grade, Ki-67 positivity, luminal B versus A samples, lymph node metastasis, and worsened PFS (and OS) outcomes. An elevated miR-454 expression was detected in higher grades, Ki-67 positive and luminal B versus A samples. Higher miR-493 levels were noted for the tumor stage (and grade) and worse patient outcomes (PFS, OS). The data also suggested that miR-451a and miR-328 may have tumor suppressor roles, and miR-182 and miR-200c pro-oncogenic functions, while the remaining sncRNAs did not evince any significant associations. CONCLUSION We showed particular microRNAs and U6 snRNA as differentially expressed between tumors and benign tissues and associated with clinicopathological parameters, thus potentially corresponding with important roles in breast carcinogenesis. Their importance should be further investigated and evaluated in follow-up studies to reveal their potential in clinical practice.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Luboš Minář
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Tefr Faridová
- After-surgery Gynecological Department, Institute for the Care of Mother and Child, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Escuin D, Bell O, García-Valdecasas B, Clos M, Larrañaga I, López-Vilaró L, Mora J, Andrés M, Arqueros C, Barnadas A. Small Non-Coding RNAs and Their Role in Locoregional Metastasis and Outcomes in Early-Stage Breast Cancer Patients. Int J Mol Sci 2024; 25:3982. [PMID: 38612790 PMCID: PMC11011815 DOI: 10.3390/ijms25073982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Deregulation of small non-coding RNAs (sncRNAs) has been associated with the onset of metastasis. We evaluated the expression of sncRNAs in patients with early-stage breast cancer, performing RNA sequencing in 60 patients for whom tumor and sentinel lymph node (SLN) samples were available, and conducting differential expression, gene ontology, enrichment and survival analyses. Sequencing annotation classified most of the sncRNAs into small nucleolar RNA (snoRNAs, 70%) and small nuclear RNA (snRNA, 13%). Our results showed no significant differences in sncRNA expression between tumor or SLNs obtained from the same patient. Differential expression analysis showed down-regulation (n = 21) sncRNAs and up-regulation (n = 2) sncRNAs in patients with locoregional metastasis. The expression of SNHG5, SNORD90, SCARNA2 and SNORD78 differentiated luminal A from luminal B tumors, whereas SNORD124 up-regulation was associated with luminal B HER2+ tumors. Discriminating analysis and receiver-operating curve analysis revealed a signature of six snoRNAs (SNORD93, SNORA16A, SNORD113-6, SNORA7A, SNORA57 and SNORA18A) that distinguished patients with locoregional metastasis and predicted patient outcome. Gene ontology and Reactome pathway analysis showed an enrichment of biological processes associated with translation initiation, protein targeting to specific cell locations, and positive regulation of Wnt and NOTCH signaling pathways, commonly involved in the promotion of metastases. Our results point to the potential of several sncRNAs as surrogate markers of lymph node metastases and patient outcome in early-stage breast cancer patients. Further preclinical and clinical studies are required to understand the biological significance of the most significant sncRNAs and to validate our results in a larger cohort of patients.
Collapse
Affiliation(s)
- Daniel Escuin
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
| | - Olga Bell
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
| | - Bárbara García-Valdecasas
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Montserrat Clos
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Itziar Larrañaga
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Laura López-Vilaró
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Josefina Mora
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Marta Andrés
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Cristina Arqueros
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Agustí Barnadas
- Institut de Recerca Sant Pau (IR Sant Pau), 08041 Barcelona, Spain; (O.B.); (B.G.-V.); (M.C.); (I.L.); (L.L.-V.); (M.A.); (C.A.); (A.B.)
- Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- School of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Sathipati SY, Tsai MJ, Aimalla N, Moat L, Shukla S, Allaire P, Hebbring S, Beheshti A, Sharma R, Ho SY. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform 2024; 6:lqae022. [PMID: 38406797 PMCID: PMC10894035 DOI: 10.1093/nargab/lqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers worldwide. As key regulatory molecules in several biological processes, microRNAs (miRNAs) are potential biomarkers for cancer. Understanding the miRNA markers that can detect BC may improve survival rates and develop new targeted therapeutic strategies. To identify a circulating miRNA signature for diagnostic prediction in patients with BC, we developed an evolutionary learning-based method called BSig. BSig established a compact set of miRNAs as potential markers from 1280 patients with BC and 2686 healthy controls retrieved from the serum miRNA expression profiles for the diagnostic prediction. BSig demonstrated outstanding prediction performance, with an independent test accuracy and area under the receiver operating characteristic curve were 99.90% and 0.99, respectively. We identified 12 miRNAs, including hsa-miR-3185, hsa-miR-3648, hsa-miR-4530, hsa-miR-4763-5p, hsa-miR-5100, hsa-miR-5698, hsa-miR-6124, hsa-miR-6768-5p, hsa-miR-6800-5p, hsa-miR-6807-5p, hsa-miR-642a-3p, and hsa-miR-6836-3p, which significantly contributed towards diagnostic prediction in BC. Moreover, through bioinformatics analysis, this study identified 65 miRNA-target genes specific to BC cell lines. A comprehensive gene-set enrichment analysis was also performed to understand the underlying mechanisms of these target genes. BSig, a tool capable of BC detection and facilitating therapeutic selection, is publicly available at https://github.com/mingjutsai/BSig.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Luke Moat
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I. Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2024; 303:106055. [PMID: 38097103 DOI: 10.1016/j.tvjl.2023.106055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Despite all clinical progress recorded in the last decades, human breast cancer (HBC) remains a major challenge worldwide both in terms of its incidence and its management. Canine mammary tumors (CMTs) share similarities with HBC and represent an alternative model for HBC. The utility of the canine model in studying HBC relies on their common features, include spontaneous development, subtype classification, mutational profile, alterations in gene expression profile, and incidence/prevalence. This review describes the similarities between CMTs and HBC regarding genomic landscape, microRNA expression alteration, methylation, and metabolomic changes occurring during mammary gland carcinogenesis. The primary purpose of this review is to highlight the advantages of using the canine model as a translational animal model for HBC research and to investigate the challenges and limitations of this approach.
Collapse
Affiliation(s)
- Luciana-Madalina Gherman
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Experimental Center of Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, 400349 Cluj-Napoca, Romania
| | - Paul Chiroi
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Andreea Nuţu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
9
|
Abd ELhafeez AS, Ghanem HM, Swellam M, Taha AM. Involvement of FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p in breast cancer. Cancer Biomark 2024; 39:313-333. [PMID: 38250762 PMCID: PMC11091646 DOI: 10.3233/cbm-230396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/01/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND FAM170B-AS1 is usually expressed low in all organs except for testicular tissues. No study was performed to explore its role in breast cancer (BC). Contradictory results were reported about hsa-miR-1202 and hsa-miR-146a-5p in BC. OBJECTIVE The present study aimed to explore the involvement of FAM170B-AS1 in BC using bioinformatics predictive tools, followed by a practical validation besides exploring the impact of hsa-miR-1202 and hsa-miR-146a-5p in BC. METHODS This study enrolled 96 female patients with BC, 30 patients with benign breast diseases (BBD), and 25 control subjects. The expressions of circulating FAM170B-AS1, hsa-miR-1202, and hsa-miR-146a-5p were quantified using qRT-PCR. These ncRNAs' associations, predictive, and diagnostic roles in BC were statistically tested. The underlying miRNA/mRNA targets of FAM170B-AS1 in BC were bioinformatically predicted followed by confirmation based on the GEPIA and TCGA databases. RESULTS The expression of FAM170B-AS1 was upregulated in sera of BC patients and hsa-miR-1202 was upregulated in sera of BBD and BC patients while that of hsa-miR-146a-5p was downregulated in BC. These FAM170B-AS1 was significantly associated with BC when compared to BBD. FAM170B-AS1 and hsa-miR-1202 were statistically associated with the BC's stage, grade, and LN metastasis. FAM170B-AS1 and hsa-miR-146a-5p gave the highest specificity and sensitivity for BC. KRAS and EGFR were predicted to be targeted by FAM170B-AS1 through interaction with hsa-miR-143-3p and hsa-miR-7-5p, respectively. Based on the TCGA database, cancer patients having mutations in FAM170B show good overall survival. CONCLUSIONS The present study reported that for the first time, FAM170B-AS1 may be a potential risk factor, predictive, and diagnostic marker for BC. In addition, FAM170B-AS1 might be involved in BC by interacting with hsa-miR-143-3p/KRAS and hsa-miR-7-5p/EGFR through enhancement or repression that may present a new therapeutic option for BC.
Collapse
Affiliation(s)
| | - Hala Mostafa Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Menha Swellam
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza, Egypt
- High Throughput Molecular and Genetic laboratory, Central Laboratories Network and the Centers of Excellence, National Research Centre, Dokki, Giza, Egypt
| | | |
Collapse
|
10
|
Elmasry H, Khadrawy SM, Kamel MM, Ibrahim MH, Abuelsaad ASA, Zanaty MI. Evaluation of MMP-13 and Micro RNA-138 as prognostic biomarkers for breast cancer in Egyptian women patients. Pathol Res Pract 2024; 253:155045. [PMID: 38176307 DOI: 10.1016/j.prp.2023.155045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Elevated serum levels of MMP-13 are linked to tumor growth and metastasis, while miR-138 dysregulation is observed in breast cancer cases. The aim of this study is to investigate the expression of miR-138 and MMP-13 levels as potential biomarkers for the prognosis of breast cancer. PATIENTS AND METHOD In this retrospective case-control study, 119 female subjects were recruited and divided into three groups. MMP-13 level was measured using Enzyme Linked Immunosorbent Assay (ELISA), while real-time PCR technique was employed to quantify miR-138 expression. RESULTS Both non-metastatic and metastatic groups showed significantly higher levels of serum MMP-13 compared to other groups. MMP-13 levels are significantly increased among patients with advanced tumor size, lymph node metastasis, and triple-negative breast cancer cases. An inverse significant association between MMP-13 levels and response to treatment was observed. Expression of miR-138 underwent a significant down-regulation in breast cancer patients, and a statistically significant association was established between miR-138 expression and triple-negative breast cancer cases. A positive association was detected between the increase in miR-138 expression and the good response to treatment. The expression of miR-138 was inversely correlated with the MMP-13 levels. CONCLUSION MMP-13 levels were significantly higher in breast cancer, especially in advanced cases, suggesting its role in promoting tumor invasion and metastasis. MiR-138 was down-regulated in breast cancer, especially in triple-negative breast cancer patients, rendering it a promising biomarker for triple-negative breast cancer. Modulation of miR-138 expression and MMP-13 levels may represent therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Hossam Elmasry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt; Baheya Centre of Early Detection and Treatment of Breast Cancer, Giza, Egypt
| | - Sally M Khadrawy
- Genetics and Molecular Biology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mahmoud M Kamel
- Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Mona H Ibrahim
- Clinical and Chemical Pathology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Abdelaziz S A Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed I Zanaty
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Gómez-Acebo I, Llorca J, Alonso-Molero J, Díaz-Martínez M, Pérez-Gómez B, Amiano P, Belmonte T, Molina AJ, Burgui R, Castaño-Vinyals G, Moreno V, Molina-Barceló A, Marcos-Gragera R, Kogevinas M, Pollán M, Dierssen-Sotos T. Circulating miRNAs signature on breast cancer: the MCC-Spain project. Eur J Med Res 2023; 28:480. [PMID: 37925534 PMCID: PMC10625260 DOI: 10.1186/s40001-023-01471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
PURPOSE To build models combining circulating microRNAs (miRNAs) able to identify women with breast cancer as well as different types of breast cancer, when comparing with controls without breast cancer. METHOD miRNAs analysis was performed in two phases: screening phase, with a total n = 40 (10 controls and 30 BC cases) analyzed by Next Generation Sequencing, and validation phase, which included 131 controls and 269 cases. For this second phase, the miRNAs were selected combining the screening phase results and a revision of the literature. They were quantified using RT-PCR. Models were built using logistic regression with LASSO penalization. RESULTS The model for all cases included seven miRNAs (miR-423-3p, miR-139-5p, miR-324-5p, miR-1299, miR-101-3p, miR-186-5p and miR-29a-3p); which had an area under the ROC curve of 0.73. The model for cases diagnosed via screening only took in one miRNA (miR-101-3p); the area under the ROC curve was 0.63. The model for disease-free cases in the follow-up had five miRNAs (miR-101-3p, miR-186-5p, miR-423-3p, miR-142-3p and miR-1299) and the area under the ROC curve was 0.73. Finally, the model for cases with active disease in the follow-up contained six miRNAs (miR-101-3p, miR-423-3p, miR-139-5p, miR-1307-3p, miR-331-3p and miR-21-3p) and its area under the ROC curve was 0.82. CONCLUSION We present four models involving eleven miRNAs to differentiate healthy controls from different types of BC cases. Our models scarcely overlap with those previously reported.
Collapse
Affiliation(s)
- Inés Gómez-Acebo
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain.
- IDIVAL, Santander, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain.
| | - Javier Llorca
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Jessica Alonso-Molero
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- IDIVAL, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Thalía Belmonte
- IUOPA, University of Oviedo and ISPA (Health Research Institute of Asturias), Oviedo, Spain
| | - Antonio J Molina
- Grupo de Investigación en Interacción, Gen-Ambiente-Salud (GIIGAS), Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Rosana Burgui
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Institute of Public and Occupational Health of Navarre (ISPLN), 31003, Pamplona, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Víctor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Colorectal Cancer Group, ONCOBELL Program, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, Barcelona, Spain
| | - Ana Molina-Barceló
- Cancer and Public Health UnitFoundation for the Promotion of Health and Biomedical Research (FISABIO-Salud Pública) in the Valencia Region, Valencia, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Epidemiology Unit and Girona Cancer Registry, Oncology Coordination Plan, Department of Health, Autonomous Government of Catalonia, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IdiBGi), Girona, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Trinidad Dierssen-Sotos
- Department of Preventive Medicine and Public Health, University of Cantabria, Santander, Spain
- IDIVAL, Santander, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Chakraborty N, Holmes-Hampton GP, Gautam A, Kumar R, Hritzo B, Legesse B, Dimitrov G, Ghosh SP, Hammamieh R. Early to sustained impacts of lethal radiation on circulating miRNAs in a minipig model. Sci Rep 2023; 13:18496. [PMID: 37898651 PMCID: PMC10613244 DOI: 10.1038/s41598-023-45250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Early diagnosis of lethal radiation is imperative since its intervention time windows are considerably short. Hence, ideal diagnostic candidates of radiation should be easily accessible, enable to inform about the stress history and objectively triage subjects in a time-efficient manner. Therefore, the small molecules such as metabolites and microRNAs (miRNAs) from plasma are legitimate biomarker candidate for lethal radiation. Our objectives were to comprehend the radiation-driven molecular pathogenesis and thereby determine biomarkers of translational potential. We investigated an established minipig model of LD70/45 total body irradiation (TBI). In this pilot study, plasma was collected pre-TBI and at multiple time points post-TBI. The majority of differentially expressed miRNAs and metabolites were perturbed immediately after TBI that potentially underlined the severity of its acute impact. The integrative network analysis of miRNA and metabolites showed a cohesive response; the early and consistent perturbations of networks were linked to cancer and the shift in musculoskeletal atrophy synchronized with the comorbidity-networks associated with inflammation and bioenergy synthesis. Subsequent comparative pipeline delivered 92 miRNAs, which demonstrated sequential homology between human and minipig, and potentially similar responses to lethal radiation across these two species. This panel promised to retrospectively inform the time since the radiation occurred; thereby could facilitate knowledge-driven interventions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Raina Kumar
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Bernadette Hritzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - Betre Legesse
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- The Geneva Foundation, US Army Center for Environmental Health Research, Fort Detrick, MD, 21702-5010, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, 20889, USA.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
13
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
14
|
Escuin D, López-Vilaró L, Bell O, Mora J, García-Valdecasas B, Moral A, Clos M, Boronat L, Arqueros C, Barnadas A. Circulating miRNA Expression Is Inversely Correlated with Tumor Tissue or Sentinel Lymph Nodes in Estrogen Receptor-Positive Early Breast Cancer Patients. Int J Mol Sci 2023; 24:13293. [PMID: 37686099 PMCID: PMC10487825 DOI: 10.3390/ijms241713293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The deregulation of microRNAs (miRNAs) is associated with the various steps of the metastatic process. In addition, circulating miRNAs are remarkably stable in peripheral blood, making them ideal noninvasive biomarkers for disease diagnosis. Here, we performed a proof-of-principle study to determine whether tumor-tissue-derived miRNAs are traceable to plasma in ER-positive early breast cancer patients. We performed RNA-sequencing on 30 patients for whom plasma, sentinel lymph nodes (SLNs) and tumor tissue were available. We carried out differential expression, gene ontology and enrichment analyses. Our results show that circulating miRNAs are inversely expressed compared with tumor tissue or SLNs obtained from the same patients. Our differential expression analysis shows the overall downregulation of circulating miRNAs. However, the expression of miR-643a-3p and miR-223 was up-regulated in patients with positive SLNs. Furthermore, gene ontology analysis showed the significant enrichment of biological processes associated with the regulation of epithelial cell proliferation and transcriptional regulation commonly involved in the promotion of metastases. Our results suggest the potential role of several circulating miRNAs as surrogate markers of lymph node metastases in early breast cancer patients. Further preclinical and clinical studies are required to understand the biological significance of the most significant miRNAs and to validate our results in a larger cohort of patients.
Collapse
Affiliation(s)
- Daniel Escuin
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (L.L.-V.); (O.B.)
| | - Laura López-Vilaró
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (L.L.-V.); (O.B.)
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Olga Bell
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (L.L.-V.); (O.B.)
| | - Josefina Mora
- Department of Biochemistry, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Bárbara García-Valdecasas
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (B.G.-V.); (A.M.); (M.C.)
| | - Antonio Moral
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (B.G.-V.); (A.M.); (M.C.)
- Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Montserrat Clos
- Department of Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (B.G.-V.); (A.M.); (M.C.)
| | - Laia Boronat
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (L.B.); (C.A.)
| | - Cristina Arqueros
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (L.B.); (C.A.)
| | - Agustí Barnadas
- Institut d’Investigació Biomèdica Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; (L.L.-V.); (O.B.)
- Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (L.B.); (C.A.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
15
|
El-Toukhy SE, El-Daly SM, Kamel MM, Nabih HK. The diagnostic significance of circulating miRNAs and metabolite profiling in early prediction of breast cancer in Egyptian women. J Cancer Res Clin Oncol 2023; 149:5437-5451. [PMID: 36459290 PMCID: PMC10349790 DOI: 10.1007/s00432-022-04492-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Breast cancer (BC) is one of the most commonly diagnosed solid malignancies in women worldwide. PURPOSE Finding new non-invasive circulating diagnostic biomarkers will facilitate the early prediction of BC and provide valuable insight into disease progression and response to therapy using a safe and more accessible approach available every inspection time. Therefore, our present study aimed to investigate expression patterns of potentially circulating biomarkers that can differentiate well between benign, malignant, and healthy subjects. METHODS To achieve our target, quantitative analyses were performed for some circulating biomarkers which have a role in the proliferation and tumor growth, as well as, glutamic acid, and human epidermal growth receptor 2 (HER2) in blood samples of BC patients in comparison to healthy controls using qRT-PCR, liquid chromatography/mass spectrometry (LC/MS/MS), and ELISA. RESULTS Our findings showed that the two miRNAs (miRNA-145, miRNA-382) were expressed at lower levels in BC sera than healthy control group, while miRNA-21 was expressed at higher levels in BC patients than control subjects. Area under ROC curves of BC samples revealed that AUC of miRNA-145, miRNA-382, miRNA-21, and glutamic acid was evaluated to equal 0.99, 1.00, 1.00 and 1.00, respectively. Besides, there was a significantly positive correlation between miRNA-145 and miRNA-382 (r = 0.737), and a highly significant positive correlation between miRNA-21 and glutamic acid (r = 0.385). CONCLUSION Based on our results, we conclude that the detection of serum miRNA-145, -382 and -21 as a panel along with glutamic acid, and circulating HER2 concentrations could be useful as a non-invasive diagnostic profiling for early prediction of breast cancer in Egyptian patients. It can provide an insight into disease progression, discriminate between malignancy and healthy control, and overcome the use limitations (low sensitivity and specificity, repeated risky exposure, and high cost) of other detecting tools, including mammography, magnetic resonance imaging, and ultrasound.
Collapse
Affiliation(s)
- Safinaz E El-Toukhy
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud M Kamel
- Laboratory Department, Baheya Hospital for Early Detection and Treatment of Breast Cancer, National Cancer Institute, Cairo University, Giza, Egypt
| | - Heba K Nabih
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, 33 El-Bohouth st., Dokki, P.O. 12622, Giza, Egypt.
| |
Collapse
|
16
|
Downregulated miR-367-3p, miR-548aq-5p, and miR-4710 in Human Whole Blood: Potential Biomarkers for Breast Cancer With Axillary Lymph Node Metastasis. Clin Breast Cancer 2023; 23:189-198. [PMID: 36564279 DOI: 10.1016/j.clbc.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing studies have shown that microRNAs (miRNAs) have great diagnostic value in cancer. Axillary lymph node metastasis (ALNM) is closely related to the prognosis of breast cancer. However, it remains unknown whether miRNAs in whole blood could be promising biomarkers in breast cancer ALNM. METHODS An miRNA microarray was used to screen potential differentially expressed miRNA candidates in whole blood of three breast cancer patients with ALNM and three without ALNM. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect candidate differentially expressed miRNAs in the whole blood of 109 breast cancer patients. Furthermore, bioinformatics analysis was carried to predict the potential targets and enriched pathway of miRNAs. RESULTS QRT-PCR validated the fact that miR-367-3p, miR-548aq-5p and miR-4710 are downregulated in breast cancer with ALNM compared to it without ALNM. Receiver operating characteristic (ROC) curve analysis revealed that miR-367-3p, miR-548aq-5p and miR-4710 have good diagnostic values. Notably, the three-miRNA signature showed better predictive value, with an area under ROC curve (AUC) of 0.7414. Bioinformatics analysis revealed that the miRNAs could participate in a complex network and thus be involved in cancer-related pathways. CONCLUSIONS Our findings support the potential of miR-367-3p, miR-548aq-5p and miR-4710 and the three-miRNA signature as biomarkers for breast cancer with ALNM.
Collapse
|
17
|
Circulating Exosomal miR-493-3p Affects Melanocyte Survival and Function by Regulating Epidermal Dopamine Concentration in Segmental Vitiligo. J Invest Dermatol 2022; 142:3262-3273.e11. [PMID: 35690140 DOI: 10.1016/j.jid.2022.05.1086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 01/05/2023]
Abstract
Circulating exosomal microRNAs have been used as potential biomarkers for various disorders. However, to date, the microRNA expression profile of circulating exosomes in patients with segmental vitiligo (SV) has not been identified. Thus, we aimed to identify the expression profile of circulating exosomal microRNAs and investigate their role in the pathogenesis of SV. Our study identified the expression profile of circulating exosomal microRNAs in SV and selected miR-493-3p as a candidate biomarker whose expression is significantly increased in circulating exosomes and perilesions in patients with SV. Circulating exosomes were internalized by human primary keratinocytes and increased dopamine secretion in vitro. Furthermore, miR-493-3p overexpression in keratinocytes increased dopamine concentration in the culture supernatant, which led to a significant increase in ROS and melanocyte apoptosis as well as a decrease in melanocyte proliferation and melanin synthesis in the coculture system by targeting HNRNPU. We also confirmed that HNRNPU could bind to and regulate COMT, a major degradative enzyme of dopamine. Hence, circulating exosomal miR-493-3p is a biomarker for SV, and the miR-493-3p/HNRNPU/COMT/dopamine axis may contribute to melanocyte dysregulation in the pathogenesis of SV.
Collapse
|
18
|
Pane K, Zanfardino M, Grimaldi AM, Baldassarre G, Salvatore M, Incoronato M, Franzese M. Discovering Common miRNA Signatures Underlying Female-Specific Cancers via a Machine Learning Approach Driven by the Cancer Hallmark ERBB. Biomedicines 2022; 10:biomedicines10061306. [PMID: 35740327 PMCID: PMC9219956 DOI: 10.3390/biomedicines10061306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022] Open
Abstract
Big data processing, using omics data integration and machine learning (ML) methods, drive efforts to discover diagnostic and prognostic biomarkers for clinical decision making. Previously, we used the TCGA database for gene expression profiling of breast, ovary, and endometrial cancers, and identified a top-scoring network centered on the ERBB2 gene, which plays a crucial role in carcinogenesis in the three estrogen-dependent tumors. Here, we focused on microRNA expression signature similarity, asking whether they could target the ERBB family. We applied an ML approach on integrated TCGA miRNA profiling of breast, endometrium, and ovarian cancer to identify common miRNA signatures differentiating tumor and normal conditions. Using the ML-based algorithm and the miRTarBase database, we found 205 features and 158 miRNAs targeting ERBB isoforms, respectively. By merging the results of both databases and ranking each feature according to the weighted Support Vector Machine model, we prioritized 42 features, with accuracy (0.98), AUC (0.93–95% CI 0.917–0.94), sensitivity (0.85), and specificity (0.99), indicating their diagnostic capability to discriminate between the two conditions. In vitro validations by qRT-PCR experiments, using model and parental cell lines for each tumor type showed that five miRNAs (hsa-mir-323a-3p, hsa-mir-323b-3p, hsa-mir-331-3p, hsa-mir-381-3p, and hsa-mir-1301-3p) had expressed trend concordance between breast, ovarian, and endometrium cancer cell lines compared with normal lines, confirming our in silico predictions. This shows that an integrated computational approach combined with biological knowledge, could identify expression signatures as potential diagnostic biomarkers common to multiple tumors.
Collapse
Affiliation(s)
- Katia Pane
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | - Mario Zanfardino
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
- Correspondence:
| | - Anna Maria Grimaldi
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy;
| | - Marco Salvatore
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| | | | - Monica Franzese
- IRCCS Synlab SDN, 80143 Naples, Italy; (K.P.); (A.M.G.); (M.S.); (M.I.); (M.F.)
| |
Collapse
|
19
|
Sibilano M, Tullio V, Adorno G, Savini I, Gasperi V, Catani MV. Platelet-Derived miR-126-3p Directly Targets AKT2 and Exerts Anti-Tumor Effects in Breast Cancer Cells: Further Insights in Platelet-Cancer Interplay. Int J Mol Sci 2022; 23:ijms23105484. [PMID: 35628294 PMCID: PMC9141257 DOI: 10.3390/ijms23105484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/07/2023] Open
Abstract
Among the surrounding cells influencing tumor biology, platelets are recognized as novel players as they release microvesicles (MVs) that, once delivered to cancer cells, modulate signaling pathways related to cell growth and dissemination. We have previously shown that physiological delivery of platelet MVs enriched in miR-126 exerted anti-tumor effects in different breast cancer (BC) cell lines. Here, we seek further insight by identifying AKT2 kinase as a novel miR-126-3p direct target, as assessed by bioinformatic analysis and validated by luciferase assay. Both ectopic expression and platelet MV-mediated delivery of miR-126-3p downregulated AKT2 expression, thus suppressing proliferating and invading properties, in either triple negative (BT549 cells) or less aggressive Luminal A (MCF-7 cells) BC subtypes. Accordingly, as shown by bioinformatic analysis, both high miR-126 and low AKT2 levels were associated with favorable long-term prognosis in BC patients. Our results, together with the literature data, indicate that miR-126-3p exerts suppressor activity by specifically targeting components of the PIK3/AKT signaling cascade. Therefore, management of platelet-derived MV production and selective delivery of miR-126-3p to tumor cells may represent a useful tool in multimodal therapeutic approaches in BC patients.
Collapse
Affiliation(s)
- Matteo Sibilano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Valentina Tullio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Gaspare Adorno
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Isabella Savini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
| | - Valeria Gasperi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-7259-6465 (V.G.); +39-06-7259-6465 (M.V.C.)
| | - Maria Valeria Catani
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (M.S.); (V.T.); (I.S.)
- Correspondence: (V.G.); (M.V.C.); Tel.: +39-06-7259-6465 (V.G.); +39-06-7259-6465 (M.V.C.)
| |
Collapse
|