1
|
Zeng S, Yin S, Lian S, Luo M, Feng L, Liao Y, Huang Z, Zheng Y, Xie C, Zhuo S. A Clinical-Radiomic Combined Model based on Dual-Layer Spectral CT for Predicting Pathological T4 in Gastric Cancer. Acad Radiol 2025:S1076-6332(25)00383-6. [PMID: 40328540 DOI: 10.1016/j.acra.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 05/08/2025]
Abstract
RATIONALE AND OBJECTIVES This study aimed to develop and validate a dual-layer spectral CT based clinical-radiomic model for pre-treatment prediction of pathological T4 (pT4) in gastric cancer (GC) patients. MATERIALS AND METHODS This retrospective study included 148 surgically confirmed GC patients who underwent dual-layer spectral CT scanning before surgery and were divided into a training (n=104) and test (n=44) cohorts. Subjective assessments were performed based on conventional 120-kV CT images by two readers. Clinical models were developed using patient demographics, serum tumor markers, and image features from CT scans. Radiomics model included features extracted from conventional 120-kV CT and dual-layer CT-derived spectral base image (SBI), such as virtual monoenergetic images (40 keV, 70 keV, 100 keV), iodine density (ID), effective atomic number (Zeff), and electron density (ED) images for both the arterial phase (AP) and portal venous phase (PVP). A clinical-radiomic combined model was developed and visualized using a nomogram. RESULTS Tumor thickness on CT and serum level of CA19-9 levels were identified as independent predictors. The clinical-radiomic combined model demonstrated superior performance compared to subjective image interpretation and other models, with an AUC of 0.906 (95% CI, 0.848-0.963) in the training cohort and 0.873 in the test cohort. The nomogram was significantly associated with pT4 status, supporting its potential utility in clinical prediction. CONCLUSION The integration of clinical characteristics with radiomic features from conventional CT and dual-layer CT-derived SBI achieved a high diagnostic accuracy for predicting pT4 in GC patients. This combined approach could assist in treatment planning and patient management in GC.
Collapse
Affiliation(s)
- Sihui Zeng
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Shaohan Yin
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Shanshan Lian
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Ma Luo
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Lili Feng
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Yuting Liao
- Philips Healthcare, Guangzhou 510000, PR China (Y.L., Z.H.)
| | - Zhijie Huang
- Philips Healthcare, Guangzhou 510000, PR China (Y.L., Z.H.)
| | - Yuquan Zheng
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.)
| | - Chuanmiao Xie
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.).
| | - Shuiqing Zhuo
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.); State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, PR China (S.Z., S.Y., S.L., M.L., L.F., Y.Z., C.X.).
| |
Collapse
|
2
|
Jia PF, Li YR, Wang LY, Lu XR, Guo X. Radiomics in esophagogastric junction cancer: A scoping review of current status and advances. Eur J Radiol 2024; 177:111577. [PMID: 38905802 DOI: 10.1016/j.ejrad.2024.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
PURPOSE This scoping review aimed to understand the advances in radiomics in esophagogastric junction (EGJ) cancer and assess the current status of radiomics in EGJ cancer. METHODS We conducted systematic searches of PubMed, Embase, and Web of Science databases from January 18, 2012, to January 15, 2023, to identify radiomics articles related to EGJ cancer. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies using the Radiomics Quality Score (RQS) and the METhodological RadiomICs Score (METRICS) tool, respectively. RESULTS A total of 120 articles were retrieved from the three databases, and after screening, only six papers met the inclusion criteria. These studies investigated the role of radiomics in differentiating adenocarcinoma from squamous carcinoma, diagnosing T-stage, evaluating HER2 overexpression, predicting response to neoadjuvant therapy, and prognosis in EGJ cancer. The median score percentage of RQS was 34.7% (range from 22.2% to 38.9%). The median score percentage of METRICS was 71.2% (range from 58.2% to 84.9%). CONCLUSION Although there is a considerable difference between the RQS and METRICS scores of the included literature, we believe that the research value of radiomics in EGJ cancer has been revealed. In the future, while actively exploring more diagnostic, prognostic, and biological correlation studies in EGJ cancer, greater emphasis should be placed on the standardization and clinical application of radiomics.
Collapse
Affiliation(s)
- Ping-Fan Jia
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Yu-Ru Li
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Lu-Yao Wang
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiao-Rui Lu
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xing Guo
- Department of Medical Imaging, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China.
| |
Collapse
|
3
|
Garbarino GM, Polici M, Caruso D, Laghi A, Mercantini P, Pilozzi E, van Berge Henegouwen MI, Gisbertz SS, van Grieken NCT, Berardi E, Costa G. Radiomics in Oesogastric Cancer: Staging and Prediction of Preoperative Treatment Response: A Narrative Review and the Results of Personal Experience. Cancers (Basel) 2024; 16:2664. [PMID: 39123392 PMCID: PMC11311587 DOI: 10.3390/cancers16152664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Oesophageal, gastroesophageal, and gastric malignancies are often diagnosed at locally advanced stage and multimodal therapy is recommended to increase the chances of survival. However, given the significant variation in treatment response, there is a clear imperative to refine patient stratification. The aim of this narrative review was to explore the existing evidence and the potential of radiomics to improve staging and prediction of treatment response of oesogastric cancers. METHODS The references for this review article were identified via MEDLINE (PubMed) and Scopus searches with the terms "radiomics", "texture analysis", "oesophageal cancer", "gastroesophageal junction cancer", "oesophagogastric junction cancer", "gastric cancer", "stomach cancer", "staging", and "treatment response" until May 2024. RESULTS Radiomics proved to be effective in improving disease staging and prediction of treatment response for both oesophageal and gastric cancer with all imaging modalities (TC, MRI, and 18F-FDG PET/CT). The literature data on the application of radiomics to gastroesophageal junction cancer are very scarce. Radiomics models perform better when integrating different imaging modalities compared to a single radiology method and when combining clinical to radiomics features compared to only a radiomics signature. CONCLUSIONS Radiomics shows potential in noninvasive staging and predicting response to preoperative therapy among patients with locally advanced oesogastric cancer. As a future perspective, the incorporation of molecular subgroup analysis to clinical and radiomic features may even increase the effectiveness of these predictive and prognostic models.
Collapse
Affiliation(s)
| | - Michela Polici
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Paolo Mercantini
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, 00189 Rome, Italy
| | - Mark I. van Berge Henegouwen
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, 1081 HV Amsterdam, The Netherlands
| | - Suzanne S. Gisbertz
- Department of Surgery, Amsterdam UMC Location University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, 1081 HV Amsterdam, The Netherlands
| | - Nicole C. T. van Grieken
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eva Berardi
- Department of Radiology, San Camillo Hospital, ASL RM 1, 00152 Rome, Italy
| | - Gianluca Costa
- Department of Life Science, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
4
|
Lu N, Guan X, Zhu J, Li Y, Zhang J. A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation. Cancers (Basel) 2023; 15:4497. [PMID: 37760468 PMCID: PMC10526233 DOI: 10.3390/cancers15184497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE This study aimed to build a deep learning system using enhanced computed tomography (CT) portal-phase images for predicting colorectal cancer patients' preoperative staging and RAS gene mutation status. METHODS The contrast-enhanced CT image dataset comprises the CT portal-phase images from a retrospective cohort of 231 colorectal cancer patients. The deep learning system was developed via migration learning for colorectal cancer detection, staging, and RAS gene mutation status prediction. This study used pre-trained Yolov7, vision transformer (VIT), swin transformer (SWT), EfficientNetV2, and ConvNeXt. 4620, and contrast-enhanced CT images and annotated tumor bounding boxes were included in the tumor identification and staging dataset. A total of 19,700 contrast-enhanced CT images comprise the RAS gene mutation status prediction dataset. RESULTS In the validation cohort, the Yolov7-based detection model detected and staged tumors with a mean accuracy precision (IoU = 0.5) (mAP_0.5) of 0.98. The area under the receiver operating characteristic curve (AUC) in the test set and validation set for the VIT-based prediction model in predicting the mutation status of the RAS genes was 0.9591 and 0.9554, respectively. The detection network and prediction network of the deep learning system demonstrated great performance in explaining contrast-enhanced CT images. CONCLUSION In this study, a deep learning system was created based on the foundation of contrast-enhanced CT portal-phase imaging to preoperatively predict the stage and RAS mutation status of colorectal cancer patients. This system will help clinicians choose the best treatment option to increase colorectal cancer patients' chances of survival and quality of life.
Collapse
Affiliation(s)
- Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| | - Jianguo Zhu
- Department of Radiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, No. 121, Jiangjiayuan Road, Nanjing 210011, China (X.G.)
| |
Collapse
|
5
|
Mori M, Palumbo D, De Cobelli F, Fiorino C. Does radiomics play a role in the diagnosis, staging and re-staging of gastroesophageal junction adenocarcinoma? Updates Surg 2023; 75:273-279. [PMID: 36114920 DOI: 10.1007/s13304-022-01377-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
Radiomics is an emerging field of investigation in medicine consisting in the extraction of quantitative features from conventional medical images and exploring their potentials in improving diagnosis, prognosis and outcome prediction after therapy. Clinical applications are still limited, mostly due to reproducibility and repeatability issues as well as to limited interpretability of predictive radiomic-based features/signatures. In the specific case of gastroesophageal junction (GEJ) adenocarcinoma, the expectancies are particularly high, mainly due to its increasing incidence and to the limited performance of conventional imaging techniques in assessing correct diagnosis and accurate pre-surgical tumor characterization. Accordingly, current literature was reviewed, emphasizing the methodological quality. In addition, papers were scored according to the Radiomic Quality Score (RQS), weighting more the clinical applicability and generalizability of the resulting models. According to the criteria of the search, only two papers were retained: the resulting technical quality was relatively high for both, while the corresponding RQS were 15 and 19 (on a scale of 31). Although the potentials of radiomics in the setting of GEJ adenocarcinoma are relevant, they remain largely unexplored, warranting an urgent need of high-quality, possibly prospective, multicenter studies.
Collapse
Affiliation(s)
- Martina Mori
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.,Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Diego Palumbo
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Fiorino
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy. .,Medical Physics, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
6
|
Can PD-L1 expression be predicted by contrast-enhanced CT in patients with gastric adenocarcinoma? a preliminary retrospective study. Abdom Radiol (NY) 2023; 48:220-228. [PMID: 36271155 PMCID: PMC9849168 DOI: 10.1007/s00261-022-03709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND This study aimed to construct a computed tomography (CT) radiomics model to predict programmed cell death-ligand 1 (PD-L1) expression in gastric adenocarcinoma patients using radiomics features. METHODS A total of 169 patients with gastric adenocarcinoma were studied retrospectively and randomly divided into training and testing datasets. The clinical data of the patients were recorded. Radiomics features were extracted to construct a radiomics model. The random forest-based Boruta algorithm was used to screen the features of the training dataset. A receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of the model. RESULTS Four radiomics features were selected to construct a radiomics model. The radiomics signature showed good efficacy in predicting PD-L1 expression, with an area under the receiver operating characteristic curve (AUC) of 0.786 (p < 0.001), a sensitivity of 0.681, and a specificity of 0.826. The radiomics model achieved the greatest areas under the curve (AUCs) in the training dataset (AUC = 0.786) and testing dataset (AUC = 0.774). The calibration curves of the radiomics model showed great calibration performances outcomes in the training dataset and testing dataset. The net clinical benefit for the radiomics model was high. CONCLUSION CT radiomics has important value in predicting the expression of PD-L1 in patients with gastric adenocarcinoma.
Collapse
|
7
|
Yang H, Sun J, Liu H, Liu X, She Y, Zhang W, Zhou J. Clinico-radiological nomogram for preoperatively predicting post-resection hepatic metastasis in patients with gastric adenocarcinoma. Br J Radiol 2022; 95:20220488. [PMID: 36181505 PMCID: PMC9733617 DOI: 10.1259/bjr.20220488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To establish and validate a model comprising clinical and radiological features to pre-operatively predict post-resection hepatic metastasis (HM) in patients with gastric adenocarcinoma (GAC). METHODS We retrospectively analyzed 461 patients (HM, 106 patients); and non-metastasis (NM, 355 patients) who were confirmed to have GAC post-surgery. The patients were randomly divided into the training (n = 307) and testing (n = 154) cohorts in a 2:1 ratio. The main clinical risk factors were filtered using the least absolute shrinkage and selection operator algorithm according to their diagnostic value. The selected factors were then used to establish a clinical-radiological model using stepwise logistic regression. The Akaike's information criterion and receiver operating characteristic (ROC) analyses were used to evaluate the prediction performance of the model. RESULTS Logistic regression analysis showed that the peak enhancement phase, tumor location, alpha-fetoprotein, cancer antigen (CA)-125, CA724 levels, CT-based Tstage and arterial phase CT values were important independent predictors. Based on these predictors, the areas under the ROC curve of the training and testing cohorts were 0.864 and 0.832, respectively, for predicting post-operative HM. CONCLUSION This study built a synthetical nomogram using the pre-operative clinical and radiological features of patients to predict the likelihood of HM occurring after GAC surgery. It may help guide pre-operative clinical decision-making and benefit patients with GAC in the future. ADVANCES IN KNOWLEDGE 1. The combination of clinical risk factors and CT imaging features provided useful information for predicting HM in GAC.2. A clinicoradiological nomogram is a tool for the pre-operative prediction of HM in patients with GAC.
Collapse
Affiliation(s)
| | - Jianqing Sun
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | | | | | | | | | | |
Collapse
|
8
|
Li KY, Ou J, Zhou HY, Yu ZY, Gao D, You XY, Zhang XM, Li R, Chen TW. Gross tumor volume of adenocarcinoma of esophagogastric junction corresponding to cT and cN stages measured with computed tomography to quantitatively determine resectabiliy: A case control study. Front Oncol 2022; 12:1038135. [PMID: 36465362 PMCID: PMC9714446 DOI: 10.3389/fonc.2022.1038135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 07/25/2024] Open
Abstract
PURPOSE To determine whether gross tumor volume (GTV) of adenocarcinoma of esophagogastric junction (AEG) corresponding to cT and cN stages measured on CT could help quantitatively determine resectability. MATERIALS AND METHODS 343 consecutive patients with AEG, including 279 and 64 randomly enrolled in training cohort (TC) and validation cohort (VC), respectively, underwent preoperative contrast-enhanced CT. Univariate and multivariate analyses for TC were performed to determine factors associated with resectability. Receiver operating characteristic (ROC) analyses were to determine if GTV corresponding to cT and cN stages could help determine resectability. For VC, Cohen's Kappa tests were to assess performances of the ROC models. RESULTS cT stage, cN stage and GTV were independently associated with resectability of AEG with odds ratios of 4.715, 4.534 and 1.107, respectively. For differentiating resectable and unresectable AEG, ROC analyses showed that cutoff GTV of 32.77 cm3 in stage cT1-4N0-3 with an area under the ROC curve (AUC) of 0.901. Particularly, cutoffs of 27.67 and 32.77 cm3 in stages cT3 and cT4 obtained AUC values of 0.860 and 0.890, respectively; and cutoffs of 27.09, 33.32 and 37.39 cm3 in stages cN1, cN2 and cN3 obtained AUC values of 0.852, 0.821 and 0.902, respectively. In VC, Cohen's Kappa tests verified that the ROC models had good performance in distinguishing between resectable and unresectable AEG (all Cohen's K values > 0.72). CONCLUSIONS GTV, cT and cN stages could be independent determinants of resectability of AEG. And GTV corresponding to cT and cN stages can help quantitatively determine resectability.
Collapse
Affiliation(s)
| | | | - Hai-ying Zhou
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | | | | | | | | | | | - Tian-wu Chen
- Medical Imaging Key Laboratory of Sichuan Province, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
9
|
Guan X, Lu N, Zhang J. Accurate preoperative staging and HER2 status prediction of gastric cancer by the deep learning system based on enhanced computed tomography. Front Oncol 2022; 12:950185. [PMID: 36452488 PMCID: PMC9702985 DOI: 10.3389/fonc.2022.950185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/24/2022] [Indexed: 10/24/2023] Open
Abstract
Purpose To construct the deep learning system (DLS) based on enhanced computed tomography (CT) images for preoperative prediction of staging and human epidermal growth factor receptor 2 (HER2) status in gastric cancer patients. Methods The raw enhanced CT image dataset consisted of CT images of 389 patients in the retrospective cohort, The Cancer Imaging Archive (TCIA) cohort, and the prospective cohort. DLS was developed by transfer learning for tumor detection, staging, and HER2 status prediction. The pre-trained Yolov5, EfficientNet, EfficientNetV2, Vision Transformer (VIT), and Swin Transformer (SWT) were studied. The tumor detection and staging dataset consisted of 4860 enhanced CT images and annotated tumor bounding boxes. The HER2 state prediction dataset consisted of 38900 enhanced CT images. Results The DetectionNet based on Yolov5 realized tumor detection and staging and achieved a mean Average Precision (IoU=0.5) (mAP_0.5) of 0.909 in the external validation cohort. The VIT-based PredictionNet performed optimally in HER2 status prediction with the area under the receiver operating characteristics curve (AUC) of 0.9721 and 0.9995 in the TCIA cohort and prospective cohort, respectively. DLS included DetectionNet and PredictionNet had shown excellent performance in CT image interpretation. Conclusion This study developed the enhanced CT-based DLS to preoperatively predict the stage and HER2 status of gastric cancer patients, which will help in choosing the appropriate treatment to improve the survival of gastric cancer patients.
Collapse
Affiliation(s)
| | | | - Jianping Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Guan X, Lu N, Zhang J. Evaluation of Epidermal Growth Factor Receptor 2 Status in Gastric Cancer by CT-Based Deep Learning Radiomics Nomogram. Front Oncol 2022; 12:905203. [PMID: 35898877 PMCID: PMC9309372 DOI: 10.3389/fonc.2022.905203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of computed tomography (CT)-based deep learning and radiomics in preoperative evaluation of epidermal growth factor receptor 2 (HER2) status in gastric cancer. Materials and methods The clinical data on gastric cancer patients were evaluated retrospectively, and 357 patients were chosen for this study (training cohort: 249; test cohort: 108). The preprocessed enhanced CT arterial phase images were selected for lesion segmentation, radiomics and deep learning feature extraction. We integrated deep learning features and radiomic features (Inte). Four methods were used for feature selection. We constructed models with support vector machine (SVM) or random forest (RF), respectively. The area under the receiver operating characteristics curve (AUC) was used to assess the performance of these models. We also constructed a nomogram including Inte-feature scores and clinical factors. Results The radiomics-SVM model showed good classification performance (AUC, training cohort: 0.8069; test cohort: 0.7869). The AUC of the ResNet50-SVM model and the Inte-SVM model in the test cohort were 0.8955 and 0.9055. The nomogram also showed excellent discrimination achieving greater AUC (training cohort, 0.9207; test cohort, 0.9224). Conclusion CT-based deep learning radiomics nomogram can accurately and effectively assess the HER2 status in patients with gastric cancer before surgery and it is expected to assist physicians in clinical decision-making and facilitates individualized treatment planning.
Collapse
Affiliation(s)
- Xiao Guan
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Na Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
11
|
Yang L, Sun J, Yu X, Li Y, Li M, Liu J, Wang X, Shi G. Diagnosis of Serosal Invasion in Gastric Adenocarcinoma by Dual-Energy CT Radiomics: Focusing on Localized Gastric Wall and Peritumoral Radiomics Features. Front Oncol 2022; 12:848425. [PMID: 35387116 PMCID: PMC8977467 DOI: 10.3389/fonc.2022.848425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To build a radiomics model and combined model based on dual-energy CT (DECT) for diagnosing serosal invasion in gastric adenocarcinoma. Materials and methods 231 gastric adenocarcinoma patients were enrolled and randomly divided into a training (n = 132), testing (n = 58), and independent validation (n = 41) cohort. Radiomics features were extracted from the rectangular ROI of the 120-kV equivalent mixed images and iodine map (IM) images in the venous phase of DECT, which was manually delineated perpendicularly to the gastric wall in the deepest location of tumor infiltration, including the peritumoral adipose tissue within 5 mm outside the serosa. The random forest algorithm was used for radiomics model construction. Traditional features were collected by two radiologists. Univariate and multivariate logistic regression was used to construct the clinical model and combined model. The diagnostic efficacy of the models was evaluated using ROC curve analysis and compared using the Delong's test. The calibration curves were used to evaluate the calibration performance of the combined model. Results Both the radiomics model and combined model showed high efficacy in diagnosing serosal invasion in the training, testing and independent validation cohort, with AUC of 0.90, 0.90, and 0.85 for radiomics model; 0.93, 0.93, and 0.89 for combined model. The combined model outperformed the clinical model (AUC: 0.76, 0.76 and 0.81). Conclusion The radiomics model and combined model constructed based on tumoral and peritumoral radiomics features derived from DECT showed high diagnostic efficacy for serosal invasion in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Li Yang
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junyi Sun
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Yang Li
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Li
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Liu
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangming Wang
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaofeng Shi
- Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Wang S, Chen Y, Zhang H, Liang Z, Bu J. The Value of Predicting Human Epidermal Growth Factor Receptor 2 Status in Adenocarcinoma of the Esophagogastric Junction on CT-Based Radiomics Nomogram. Front Oncol 2021; 11:707686. [PMID: 34722254 PMCID: PMC8552039 DOI: 10.3389/fonc.2021.707686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose We developed and validated a CT-based radiomics nomogram to predict HER2 status in patients with adenocarcinoma of esophagogastric junction (AEG). Method A total of 101 patients with HER2-positive (n=46) and HER2-negative (n=55) esophagogastric junction adenocarcinoma (AEG) were retrospectively analyzed. They were then randomly divided into a training cohort (n=70) and a verification cohort (n=31). The radiomics features were obtained from the portal phase of the CT enhanced scan. We used the least absolute shrinkage and selection operator (LASSO) logistic regression method to select the best radiomics features in the training cohort, combined them linearly, and used the radiomics signature formula to calculate the radiomics score (Rad-score) of each AEG patient. A multivariable logistic regression method was applied to develop a prediction model that incorporated the radiomics signature and independent risk predictors. The prediction performance of the nomogram was evaluated using the training and validation cohorts. Result In the training (P<0.001) and verification groups (P<0.001), the radiomics signature combined with seven radiomics features was significantly correlated with HER2 status. The nomogram composed of CT-reported T stage and radiomics signature showed very good predictive performance for HER2 status. The area under the curve (AUC) of the training cohort was 0.946 (95% CI: 0.919–0.973), and that of the validation group was 0.903 (95% CI: 0.847–0.959). The calibration curve of the radiomics nomogram showed a good degree of calibration. Decision-curve analysis revealed that the radiomics nomogram was useful. Conclusion The nomogram CT-based radiomics signature combined with CT-reported T stage can better predict the HER2 status of AEG before surgery. It can be used as a non-invasive prediction tool for HER2 status and is expected to guide clinical treatment decisions in clinical practice, and it can assist in the formulation of individualized treatment plans.
Collapse
Affiliation(s)
- Shuxing Wang
- Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China
| | - Yiqing Chen
- Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China
| | - Han Zhang
- Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China
| | - Zhiping Liang
- Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China
| | - Jun Bu
- Department of Radiology, Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangdong, China
| |
Collapse
|