1
|
Gulati R, Fleifil Y, Jennings K, Bondoc A, Tiao G, Geller J, Timchenko L, Timchenko N. Inhibition of Histone Deacetylase Activity Increases Cisplatin Efficacy to Eliminate Metastatic Cells in Pediatric Liver Cancers. Cancers (Basel) 2024; 16:2300. [PMID: 39001363 PMCID: PMC11240720 DOI: 10.3390/cancers16132300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The pediatric liver cancers, hepatoblastoma and hepatocellular carcinoma, are dangerous cancers which often spread to the lungs. Although treatments with cisplatin significantly improve outcomes, cisplatin may not eliminate metastasis-initiating cells. Our group has recently shown that the metastatic microenvironments of hepatoblastoma contain Cancer Associated Fibroblasts (CAFs) and neuron-like cells, which initiate cancer spread from liver to lungs. In this study, we found that these cells express high levels of HDAC1; therefore, we examined if histone deacetylase inhibition improves cisplatin anti-proliferative effects and reduces the formation of tumor clusters in pediatric liver cancer metastatic microenvironments. METHODS New cell lines were generated from primary hepatoblastoma liver tumors (hbl) and lung metastases (LM) of HBL patients. In addition, cell lines were generated from hepatocellular neoplasm, not otherwise specified (HCN-NOS) tumor samples, and hcc cell lines. Hbl, LM and hcc cells were treated with cisplatin, SAHA or in combination. The effect of these drugs on the number of cells, formation of tumor clusters and HDAC1-Sp5-p21 axis were examined. RESULTS Both HBL and HCC tissue specimens have increased HDAC1-Sp5 pathway activation, recapitulated in cell lines generated from the tumors. HDAC inhibition with vorinostat (SAHA) increases cisplatin efficacy to eliminate CAFs in hbl and in hcc cell lines. Although the neuron-like cells survive the combined treatments, proliferation was inhibited. Notably, combining SAHA with cisplatin overcame cisplatin resistance in an LM cell line from an aggressive case with multiple metastases. Underlying mechanisms of this enhanced inhibition include suppression of the HDAC1-Sp5 pathway and elevation of an inhibitor of proliferation p21. Similar findings were found with gemcitabine treatments suggesting that elimination of proliferative CAFs cells is a key event in the inhibition of mitotic microenvironment. CONCLUSIONS Our studies demonstrate the synergistic benefits of HDAC inhibition and cisplatin to eliminate metastasis-initiating cells in pediatric liver cancers.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Yasmeen Fleifil
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Katherine Jennings
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
| | - Greg Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (K.J.); (L.T.)
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.G.); (Y.F.); (A.B.); (G.T.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Gulati R, Lutz M, Hanlon M, Cast A, Karns R, Geller J, Bondoc A, Tiao G, Timchenko L, Timchenko NA. Cellular origin and molecular mechanisms of lung metastases in patients with aggressive hepatoblastoma. Hepatol Commun 2024; 8:e0369. [PMID: 38285876 PMCID: PMC10830083 DOI: 10.1097/hc9.0000000000000369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND AND AIMS Lung metastases are the most threatening signs for patients with aggressive hepatoblastoma (HBL). Despite intensive studies, the cellular origin and molecular mechanisms of lung metastases in patients with aggressive HBL are not known. The aims of these studies were to identify metastasis-initiating cells in primary liver tumors and to determine if these cells are secreted in the blood, reach the lung, and form lung metastases. APPROACH We have examined mechanisms of activation of key oncogenes in primary liver tumors and lung metastases and the role of these mechanisms in the appearance of metastasis-initiating cells in patients with aggressive HBL by RNA-Seq, immunostaining, chromatin immunoprecipitation, Real-Time Quantitative Reverse Transcription PCR and western blot approaches. Using a protocol that mimics the exit of metastasis-initiating cells from tumors, we generated 16 cell lines from liver tumors and 2 lines from lung metastases of patients with HBL. RESULTS We found that primary HBL liver tumors have a dramatic elevation of neuron-like cells and cancer-associated fibroblasts and that these cells are released into the bloodstream of patients with HBL and found in lung metastases. In the primary liver tumors, the ph-S675-β-catenin pathway activates the expression of markers of cancer-associated fibroblasts; while the ZBTB3-SRCAP pathway activates the expression of markers of neurons via cancer-enhancing genomic regions/aggressive liver cancer domains leading to a dramatic increase of cancer-associated fibroblasts and neuron-like cells. Studies of generated metastasis-initiating cells showed that these cells proliferate rapidly, engage in intense cell-cell interactions, and form tumor clusters. The inhibition of β-catenin in HBL/lung metastases-released cells suppresses the formation of tumor clusters. CONCLUSIONS The inhibition of the β-catenin-cancer-enhancing genomic regions/aggressive liver cancer domains axis could be considered as a therapeutic approach to treat/prevent lung metastases in patients with HBL.
Collapse
Affiliation(s)
- Ruhi Gulati
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maggie Lutz
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Margaret Hanlon
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley Cast
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rebekah Karns
- Department of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alex Bondoc
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lubov Timchenko
- Department of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nikolai A. Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
Zang B, Ding L, Liu L, Arun Kumar S, Liu W, Zhou C, Duan Y. The immunotherapy advancement targeting malignant blastomas in early childhood. Front Oncol 2023; 13:1015115. [PMID: 36874100 PMCID: PMC9978522 DOI: 10.3389/fonc.2023.1015115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant blastomas develop relentlessly in all functional body organs inflicting severe health ailments in younger children. Malignant blastomas exhibit diverse clinical characteristics in compliance with their emergence in functional body organs. Surprisingly, neither of these preferred treatment types (surgery, radiotherapy, and chemotherapy) showed promise or were effective in treating malignant blastomas among child patients. N ew, innovative immunotherapeutic procedures including monoclonal antibodies and chimeric-antigen based receptor (CAR) cell therapy, coupled with the clinical study of reliable therapeutic targets and immune regulatory pathways targeting malignant blastomas, have attracted the attention of clinicians recently.
Collapse
Affiliation(s)
- Bolun Zang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Luyue Ding
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Linlin Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Senthil Arun Kumar
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Morgan Auld F, Sergi CM. Surgical Pathology Diagnostic Pitfalls of Hepatoblastoma. Int J Surg Pathol 2022; 30:480-491. [PMID: 35048730 PMCID: PMC9260486 DOI: 10.1177/10668969211070178] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
Hepatoblastoma (HB) is the most common malignancy within the rare cohort of pediatric primary liver tumors. It may arise sporadically or in association with germline mutations in specific genetic syndromes. Histogenesis recapitulates fetal hepatic development, however, this tumor can exhibit a markedly heterogeneous appearance both macroscopically and under the microscope. Histologic subtypes are classified based on morphologic appearance, with additional discrimination based on emerging molecular and immunohistochemical features. Numerous diagnostic pitfalls exist from clinical presentation through to ancillary testing; at all stages, the surgical pathologist must be discerning and open to collaboration with colleagues of different specialties. Problematic areas include the adequacy of tissue sampling, correlation of histology with radiologic appearance and alpha feto-protein (AFP) serology, forming a diagnostic consensus within the pediatric pathology community and choosing a shrewd immunohistochemical panel. This review discusses the sequence of events leading up to histologic assessment, and the nuances of microscopic evaluation. Along the way, pitfalls are highlighted, providing a tool for the surgical pathologists to support their individual approach.
Collapse
Affiliation(s)
| | - Consolato M. Sergi
- Anatomic Pathology Division, Children's Hospital of Eastern Ontario,
Ottawa, ON, Canada
| |
Collapse
|