1
|
Yang W, Hu Z, Gu W. Assessing the relationship between serum vitamin A, C, E, D, and B12 levels and preeclampsia. J Matern Fetal Neonatal Med 2025; 38:2466222. [PMID: 40015716 DOI: 10.1080/14767058.2025.2466222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Micronutrients play an important role in maintaining physiological functions while preventing complications associated with pregnancy. The main aim of this study was to evaluate the possible associations between vitamins A, C, D, E, B12, and preeclampsia using a retrospective analytical approach. METHODS This retrospective study enrolled pregnant women who attended routine antenatal checkups between January 2021 and January 2023 at the Obstetrics and Gynecology Hospital of Fudan University. One thousand pregnant women aged 18-50 years whose serum vitamin assessments were conducted during 12-20 weeks of gestation were enrolled. Inclusion criteria: women with preeclampsia, singleton pregnancies, and no previous history of hypertension or preeclampsia. Exclusion criteria: metabolic disorders, multiple pregnancies, and other specified exclusions. Approval of the hospital's ethics committee; all participants gave written informed consent. Demographic data analyzed include age, BMI, and gestational age, showing no significant differences in age span between groups (p > .05). RESULTS In the preeclampsia group, the serum level of vitamin A stands at 1.08 ± 0.29 μmol/L, which is lower than the control group of 1.13 ± 0.31 μmol/L (p < .05). Mean serum levels of vitamin C in preeclampsia are 51.81 ± 13.15 μmol/L, which was lower than in the control group, where it was 59.67 ± 16.40 μmol/L (p < .05). The mean serum vitamin B12 level in preeclampsia is 158.28 ± 46.77 pmol/L, lower than the 165.61 ± 40.99 pmol in the control group (p < .05). The two groups had no significant difference in serum vitamin E and vitamin D levels (p > .05). CONCLUSION Serum vitamins A, C, and B12 at 12 to 20 weeks of pregnancy might be important predisposing factors for preeclampsia. They can be used as indicators of preeclampsia severity and offer clinical detection even before the patient presents with symptoms.
Collapse
Affiliation(s)
- Wenjiao Yang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Obstetrics and Gynecology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhenhua Hu
- Department of General Practice, Meilong Community Health Service Center in Minhang District, Shanghai, China
| | - Weirong Gu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
2
|
Li M, Xie H, Du X. Cystatin C 3 (CST3) drives pathological progression in recurrent spontaneous abortion. J Reprod Immunol 2025; 168:104441. [PMID: 39914057 DOI: 10.1016/j.jri.2025.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 03/10/2025]
Abstract
This study aimed to investigate the role of Cystatin C (CST3) in trophoblast cell (TBC) function and its contribution in the development of recurrent spontaneous abortion (RSA). We established an inbred RSA model by crossing CBA/J and DBA/2 mice. We investigated and compared expression levels of CST3 and pathological changes in decidual tissues from these RSA and normal pregnant mice. We next isolated TBCs from RSA mice and transfected them with CST3 overexpression or silencing vectors to assess alterations in cell proliferation, invasion, apoptosis, autophagy, oxidative stress and inflammatory stress responses. Results showed that CST3 expression was significantly elevated in RSA mice compared to normal pregnant mice, accompanied by edema, degeneration of decidual cells, and structural disorganization. CST3 overexpression in TBCs led to a significant reduction in cloning and invasion abilities, increased apoptosis, shortened G0-G1 phase and enhanced autophagy. Conversely, silencing CST3 reversed these cellular activities, promoting TBC activity and reducing apoptosis. Additionally, CST3 overexpression intensified inflammatory and oxidative stress in TBCs, whereas silencing CST3 alleviated these stress responses, further supporting its role in RSA progression. In conclusion, CST3 is upregulated in RSA and contributes to its progression by inhibiting TBC activity, while accelerating apoptosis and autophagy. These findings suggest that CST3 silencing may offer a novel therapeutic strategy to improve pregnancy outcomes in RSA by restoring TBC function and reducing apoptosis and stress responses.
Collapse
Affiliation(s)
- Meng Li
- Department of Family planning, Weifang People's Hospital, Weifang, Shandong 261000, China
| | - Hongfei Xie
- Department of Obstetrics, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong 261021, China
| | - Xuan Du
- Chronic Disease Service Center, Weifang People's Hospital, Weifang, Shandong 261000, China.
| |
Collapse
|
3
|
Zheng L, Tang R, Fang J, Hu H, Ahmad F, Tang Q, Liu J, Zhong M, Li J. Circular RNA hsa_circ_0081343 modulates trophoblast autophagy through Rbm8a nuclear translocation. Placenta 2024; 158:89-101. [PMID: 39413593 DOI: 10.1016/j.placenta.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a kind of obstetric complication that seriously endangers fetal life. Recent studies reported significant reduction of hsa_circ_0081343 in human placenta developed in FGR and is involved in cell migration, invasion, and apoptosis of trophoblast by acting as microRNA sponges. Autophagy is required for invasion of trophoblast cells and for vascular remodeling during placentation. In this study, we aimed to explore the mechanistic link between hsa_circ_0081343 and autophagy. METHODS We investigated the interactions between hsa_circ_0081343 and RNA-binding proteins were studied by RNA pull-down assay, mass spectrometry and RNA immunoprecipitation assay. The mechanism of nuclear translocation of Rbm8a were assessed by reverse transcription-quantitative PCR, Western blot, immunofluorescence and Co-Immunoprecipitation. Western blot, immunofluorescence and transmission electron microscopy were performed to elucidate the mechanism underlying hsa_circ_0081343 and/or Rbm8a mediated regulation of autophagy. RESULTS hsa_circ_0081343 served as an RNA-binding protein (RBP) sponge. RNA binding motif protein 8A (Rbm8a) was directly bound to hsa_circ_0081343 in the cytoplasm, while knockdown of hsa_circ_0081343 facilitated Rbm8a localization in the nucleus. We also identified Rbm8a as a potential import cargo for Importin13 (Ipo13), which transported Rbm8a across the nuclear membrane into the nucleus. Ipo13 recognized Rbm8a via a functional nuclear localization signal (NLS). Furthermore, the mechanistic study revealed that hsa_circ_0081343-mediated nuclear translocation of Rbm8a activated trophoblast autophagy. DISCUSSION Our results suggest that hsa_circ_0081343 could bind to RBP and the interaction between hsa_circ_0081343 and Rbm8a participate in regulating autophagy. These findings offer novel molecular targets and insights for a potential therapeutic strategy against FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of Hepatological Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Junbo Fang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Haoyue Hu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Qiong Tang
- Department of Pathology, Southern Medical University, Guangzhou, 510515, China
| | - Jinfu Liu
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Li D, Jie Q, Li Q, Long P, Wang Z, Wang J, Tian S, Wu M, Ma Y, Huang Y. CsA promotes trophoblast invasion accompanied by changes in leukaemic inhibitory factor and fibroblast growth factor in peri-implantation blastocysts. ZYGOTE 2024; 32:71-76. [PMID: 38124629 DOI: 10.1017/s0967199423000497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.
Collapse
Affiliation(s)
- Dan Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Hainan Medical University, China
- Department of Reproductive Medicine, Haikou Women & Children Hospital, China
| | - Qiuling Jie
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Hainan Medical University, China
- Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
| | - Ping Long
- Guizhou Qiannan People's Hospital, China
| | - Zhen Wang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
| | | | | | - Menglan Wu
- Department of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Hainan Medical University, China
- Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
| | - Yuanhua Huang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Hainan Medical University, China
- Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
- Haikou Key Laboratory for Preservation of Human Genetic Resource, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, China
| |
Collapse
|
5
|
Jo U, Kim GH, Kim KR. Reconsideration of the Diagnostic Criteria for an Atypical Placental Site Nodule Comparing Typical Placental Site Nodule of the Uterus: A Report of Two Cases. Int J Gynecol Pathol 2024; 43:61-66. [PMID: 37255420 DOI: 10.1097/pgp.0000000000000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Placental site nodules (PSNs) are non-neoplastic remnants of chorionic-type intermediate trophoblastic cells from a previous gestation that form a well-defined single nodule or multiple nodules in the uterine and extrauterine sites. As the cases of PSNs transformed into gestational trophoblastic tumors were described in the literature, "atypical placental site nodules" (APSNs) have been considered as putative transitional lesions between PSNs and gestational trophoblastic tumors. Although histologic criteria and cutoff point of Ki-67 proliferation index for differentiating an APSN from a typical PSN have not been clearly defined, nodules larger than 5 mm with increased cellularity, a corded or nested appearance, marked nuclear atypia, increased mitotic activity, and an increased Ki-67 proliferation index (>5% or >8%) of intermediate trophoblastic cells seem to be accepted as diagnostic criteria for APSNs. However, some of the criteria, including lesion size and histologic features of the trophoblastic cells in the nodule are not only subjective but have features inherent of the intermediate trophoblastic cells of the fetal membrane and a typical PSN. We thought that it is not reasonable to consider them as diagnostic features of APSNs, if not associated with cellular proliferation. We present 2 cases of incidentally identified PSNs that were larger than 10 mm in size with a corded or nested arrangement of trophoblastic cells, which could have been categorized as APSNs according to the currently proposed criteria to discuss whether the currently proposed diagnostic criteria for APSNs are appropriate.
Collapse
Affiliation(s)
- Uiree Jo
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
6
|
Yang Y, Liu B, Tian J, Teng X, Liu T. Vital role of autophagy flux inhibition of placental trophoblast cells in pregnancy disorders induced by HEV infection. Emerg Microbes Infect 2023; 12:2276336. [PMID: 37882369 PMCID: PMC10796124 DOI: 10.1080/22221751.2023.2276336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Hepatitis E virus (HEV) has become one of the important pathogens that threaten the global public health. Type 3 and 4 HEV are zoonotic, which can spread vertically and cause placental damage. At the same time, autophagy plays an important role in the process of embryo development and pregnancy maintenance. However, the relationship between HEV and autophagy, especially in the placenta tissue, has not been clarified. We found lower litter rates in HEV-infected female mice, with significant intrauterine abortion of the embryo (24.19%). To explore the effects of HEV infection on placenta autophagy, chorionic cells (JEG-3) and mice placenta have been employed as research objects, while the expression of autophagy-related proteins (ATGs) has been detected in JEG-3 cells with different times of HEV inoculation. The results demonstrated that the expression of protein LC3 decreased and p62 accumulated, meanwhile ATGs such as ATG4B, ATG5, and ATG9A in JEG-3 cells have decreased significantly. In addition, the maturation of autophagosomes, which referred to the process of the combination of autophagosomes and lysosomes was prevented by HEV infection as well. All processes of autophagic flux, which include the initiation, development, and maturation three stages, were suppressed in JEG-3 cells after HEV infection. Similarly, the protein and gene expression of LC3 were significantly decreased in the placenta of pregnant mice with HEV infection. In summary, our results suggested that HEV inhibited autophagy in JEG-3 cells and placenta of pregnant mice, which might be the important pathogenic mechanisms of HEV infection leading to embryo abortion.
Collapse
Affiliation(s)
- Yifei Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Bo Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jijing Tian
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Xuepeng Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Scheliga I, Baston-Buest DM, Poschmann G, Stuehler K, Kruessel JS, Bielfeld AP. Closer to the Reality-Proteome Changes Evoked by Endometrial Scratching in Fertile Females. Int J Mol Sci 2023; 24:13577. [PMID: 37686380 PMCID: PMC10488085 DOI: 10.3390/ijms241713577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Endometrial scratching (ES) has been widely used in assisted reproductive technology to possibly improve pregnancy rates, but its exact mechanism is still not understood or investigated, and its benefits are controversially discussed. Hypothetically, ES may trigger a local immune response, leading to an improved endometrial receptivity. So far, it has been shown that ES affects the gene expression of cytokines, growth factors, and adhesive proteins, potentially modulating inflammatory pathways and adhesion molecule expression. Our pilot study applying proteomic analysis reveals that ES probably has an impact on the proteins involved in immune response pathways and cytoskeleton formation, which could potentially increase endometrial receptivity. Specifically, proteins that are involved in the immune response and cytoskeleton regulation showed a trend toward higher abundance after the first ES. On the other hand, proteins with a decreasing abundance after the first ES play roles in the regulation of the actin cytoskeleton and cellular processes such as intracellular transport, apoptosis, and autophagy. These trends in protein changes suggest that ES may affect endometrial tissue stiffness and extracellular matrix remodeling, potentially enhancing the embryos' implantation. To our knowledge, this pilot study provides, for the first time, data investigating potential changes in the endometrium due to the scratching procedure that might explain its possible benefit for patients in infertility treatment. Furthermore, the proteome of a group of patients suffering from repeated implantation failure was compared to that of the fertile group in order to transfer the basic science to clinical routine and application.
Collapse
Affiliation(s)
- Iwona Scheliga
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Dunja M Baston-Buest
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Kai Stuehler
- Institute for Molecular Medicine, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40225 Duesseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Universitätsstrasse 1, 40225 Duesseldorf, Germany
| | - Jan-Steffen Kruessel
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| | - Alexandra P Bielfeld
- Department of OB/GYN and REI (UniKiD), Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University, 40255 Duesseldorf, Germany
| |
Collapse
|
8
|
Wang P, Zhao C, Zhou H, Huang X, Ying H, Zhang S, Pan Y, Zhu H. Dysregulation of Histone Deacetylases Inhibits Trophoblast Growth during Early Placental Development Partially through TFEB-Dependent Autophagy-Lysosomal Pathway. Int J Mol Sci 2023; 24:11899. [PMID: 37569278 PMCID: PMC10418899 DOI: 10.3390/ijms241511899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Dysregulated biological behaviors of trophoblast cells can result in recurrent spontaneous abortion (RSA)-whose underlying etiology still remains insufficient. Autophagy, a conserved intracellular physiological process, is precisely monitored throughout whole pregnancy. Although the exact mechanism or role remains elusive, epigenetic modification has emerged as an important process. Herein, we found that a proportion of RSA patients exhibited higher levels of autophagy in villus tissues compared to controls, accompanied with impaired histone deacetylase (HDAC) expression. The purpose of this study is to explore the connection between HDACs and autophagy in the pathological course of RSA. Mechanistically, using human trophoblast cell models, treatment with HDAC inhibitor (HDACI)-trichostatin A (TSA) can induce autophagy by promoting nuclear translocation and transcriptional activity of the central autophagic regulator transcription factor EB (TFEB). Specifically, overactivated autophagy is involved in the TSA-driven growth inhibition of trophoblast, which can be partially reversed by the autophagy inhibitor chloroquine (CQ) or RNA interference of TFEB. In summary, our results reveal that abnormal acetylation and autophagy levels during early gestation may be associated with RSA and suggest the potential novel molecular target TFEB for RSA treatment.
Collapse
Affiliation(s)
- Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Xiaona Huang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Hanqi Ying
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
9
|
A Comparative Review of Pregnancy and Cancer and Their Association with Endoplasmic Reticulum Aminopeptidase 1 and 2. Int J Mol Sci 2023; 24:ijms24043454. [PMID: 36834865 PMCID: PMC9965492 DOI: 10.3390/ijms24043454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The fundamental basis of pregnancy and cancer is to determine the fate of the survival or the death of humanity. However, the development of fetuses and tumors share many similarities and differences, making them two sides of the same coin. This review presents an overview of the similarities and differences between pregnancy and cancer. In addition, we will also discuss the critical roles that Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and 2 may play in the immune system, cell migration, and angiogenesis, all of which are essential for fetal and tumor development. Even though the comprehensive understanding of ERAP2 lags that of ERAP1 due to the lack of an animal model, recent studies have shown that both enzymes are associated with an increased risk of several diseases, including pregnancy disorder pre-eclampsia (PE), recurrent miscarriages, and cancer. The exact mechanisms in both pregnancy and cancer need to be elucidated. Therefore, a deeper understanding of ERAP's role in diseases can make it a potential therapeutic target for pregnancy complications and cancer and offer greater insight into its impact on the immune system.
Collapse
|
10
|
Bian Y, Li J, Shen H, Li Y, Hou Y, Huang L, Song G, Qiao C. WTAP dysregulation-mediated HMGN3-m6A modification inhibited trophoblast invasion in early-onset preeclampsia. FASEB J 2022; 36:e22617. [PMID: 36412513 DOI: 10.1096/fj.202200700rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/23/2022]
Abstract
Early-onset preeclampsia (ePE) originates from abnormal implantation and placentation that involves trophoblast invasion, but its pathophysiology is not entirely understood. N6-methyladenosine (m6A) regulators mediate the progression of various cancers. The invasiveness of trophoblast cells is similar to that of tumor cells. However, little is known regarding the potential role of m6A modification in ePE and the underlying mechanism. This study aimed to explore the m6A level in placental tissue samples collected from ePE patients and to investigate whether m6A modification was an essential part of PE pathogenesis. The m6A level in placental tissue samples of 80 PE participants was examined. MeRIP-microarray, RNA-Seq, luciferase reporter assay, and RNA immunoprecipitation chip (RIP) assay were performed. The m6A level in the ePE group was significantly reduced compared with the control group. Wilms' tumor 1-associating protein (WTAP) regulated trophoblast cell migration and invasion. Mechanistically, the high mobility group nucleosomal binding domain 3 (HMGN3) gene was a target gene of WTAP in trophoblast (p < .05). WTAP enhanced the stability of HMGN3 mRNA through binding with its 3'-UTR m6A site(+485A, +522A). HMGN3 was recognized by m6A recognition protein insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), which was inhibited when knocking down WTAP. Both m6A and WTAP levels were downregulated in ePE. The m6A modification mediated by WTAP/IGF2BP1/HMGN3 axis might contribute to abnormal trophoblast invasion. Our work provided a foundation for further exploration of RNA epigenetic regulatory patterns in ePE, and indicated a new treatment strategy for ePE.
Collapse
Affiliation(s)
- Yue Bian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Jiapo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Hongfei Shen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Yuanyuan Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Yue Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Ling Huang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Guiyu Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Shenyang, China.,Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.,Research Center of China Medical University Birth Cohort, Shenyang, China
| |
Collapse
|
11
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
12
|
Doxorubicin resistant choriocarcinoma cell line derived spheroidal cells exhibit stem cell markers but reduced invasion. 3 Biotech 2022; 12:184. [PMID: 35875180 PMCID: PMC9300786 DOI: 10.1007/s13205-022-03243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/25/2022] [Indexed: 11/06/2022] Open
Abstract
Cell cycle-specific cancer chemotherapy is based on the ability of a drug to halt, minimise or destroy rapidly dividing cells. However, their efficacy is limited by the emergence of a self-renewing cell pool called “cancer stem cells” (CSC). Choriocarcinoma is a tumour of trophoblastic tissue. We, in this study, analysed whether spheroids generated from doxorubicin-treated and non-treated choriocarcinoma cell lines exhibit markers of stem cells. Two choriocarcinoma cell lines, namely JEG-3 and BeWo, were used in this study. Spheroids were generated from doxorubicin-treated cells and the non-treated cells under non-adherent condition, followed by analysis of stem-cell markers’ expression, namely NANOG, OCT4 and SOX2. Immunofluorescence analysis suggested a general increase in the markers’ concentration in spheroids relative to the parental cells. RT-qPCR and immunoblots showed an increase in the stem-cell marker expression in spheroids generated from doxorubicin-treated when compared to non-treated cells. In spheroids, Sox2 was significantly upregulated in doxorubicin-treated spheroids, whereas Nanog and Oct4 were generally downregulated when compared to non-treated spheroids. Both 2D and 3D invasion assays showed that the spheroids treated with doxorubicin exhibited reduced invasion. Our data suggest that choriocarcinoma cell lines may have the potential to produce spheroidal cells, yet the drug-treatment affected the invasion potential of spheroids.
Collapse
|
13
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Cellular sentience as the primary source of biological order and evolution. Biosystems 2022; 218:104694. [PMID: 35595194 DOI: 10.1016/j.biosystems.2022.104694] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Abstract
All life is cellular, starting some 4 billion years ago with the emergence of the first cells. In order to survive their early evolution in the face of an extremely challenging environment, the very first cells invented cellular sentience and cognition, allowing them to make relevant decisions to survive through creative adaptations in a continuously running evolutionary narrative. We propose that the success of cellular life has crucially depended on a biological version of Maxwell's demons which permits the extraction of relevant sensory information and energy from the cellular environment, allowing cells to sustain anti-entropic actions. These sensor-effector actions allowed for the creative construction of biological order in the form of diverse organic macromolecules, including crucial polymers such as DNA, RNA, and cytoskeleton. Ordered biopolymers store analogue (structures as templates) and digital (nucleotide sequences of DNA and RNA) information that functioned as a form memory to support the development of organisms and their evolution. Crucially, all cells are formed by the division of previous cells, and their plasma membranes are physically and informationally continuous across evolution since the beginning of cellular life. It is argued that life is supported through life-specific principles which support cellular sentience, distinguishing life from non-life. Biological order, together with cellular cognition and sentience, allow the creative evolution of all living organisms as the authentic authors of evolutionary novelty.
Collapse
|
15
|
Human Placental Intracellular Cholesterol Transport: A Focus on Lysosomal and Mitochondrial Dysfunction and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11030500. [PMID: 35326150 PMCID: PMC8944475 DOI: 10.3390/antiox11030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
The placenta participates in cholesterol biosynthesis and metabolism and regulates exchange between the maternal and fetal compartments. The fetus has high cholesterol requirements, and it is taken up and synthesized at elevated rates during pregnancy. In placental cells, the major source of cholesterol is the internalization of lipoprotein particles from maternal circulation by mechanisms that are not fully understood. As in hepatocytes, syncytiotrophoblast uptake of lipoprotein cholesterol involves lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI). Efflux outside the cells requires proteins such as the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. However, mechanisms associated with intracellular traffic of cholesterol in syncytiotrophoblasts are mostly unknown. In hepatocytes, uptaken cholesterol is transported to acidic late endosomes (LE) and lysosomes (LY). Proteins such as Niemann–Pick type C 1 (NPC1), NPC2, and StAR related lipid transfer domain containing 3 (STARD3) are required for cholesterol exit from the LE/LY. These proteins transfer cholesterol from the lumen of the LE/LY into the LE/LY-limiting membrane and then export it to the endoplasmic reticulum, mitochondria, or plasma membrane. Although the production, metabolism, and transport of cholesterol in placental cells are well explored, there is little information on the role of proteins related to intracellular cholesterol traffic in placental cells during physiological or pathological pregnancies. Such studies would be relevant for understanding fetal and placental cholesterol management. Oxidative stress, induced by generating excess reactive oxygen species (ROS), plays a critical role in regulating various cellular and biological functions and has emerged as a critical common mechanism after lysosomal and mitochondrial dysfunction. This review discusses the role of cholesterol, lysosomal and mitochondrial dysfunction, and ROS in the development and progression of hypercholesterolemic pregnancies.
Collapse
|
16
|
Wang Y, Xu Y, Zhu C. The Role of Autophagy in Childhood Central Nervous System Tumors. Curr Treat Options Oncol 2022; 23:1535-1547. [PMID: 36197606 PMCID: PMC9596594 DOI: 10.1007/s11864-022-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT Autophagy is a physiological process that occurs in normal tissues. Under external environmental pressure or internal environmental changes, cells can digest part of their contents through autophagy in order to reduce metabolic pressure or remove damaged organelles. In cancer, autophagy plays a paradoxical role, acting as a tumor suppressor-by removing damaged organelles and inhibiting inflammation or by promoting genome stability and the tumor-adaptive responses-as a pro-survival mechanism to protect cells from stress. In this article, we review the autophagy-dependent mechanisms driving childhood central nervous system tumor cell death, malignancy invasion, chemosensitivity, and radiosensitivity. Autophagy inhibitors and inducers have been developed, and encouraging results have been achieved in autophagy modulation, suggesting that these might be potential therapeutic agents for the treatment of pediatric central nervous system (CNS) tumors.
Collapse
Affiliation(s)
- Yafeng Wang
- Department of Hematology and Oncology, Henan Neurodevelopment Engineering Research Center for Children, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital,Zhengzhou Children’s Hospital, Zhengzhou, 450018 China ,Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Commission Key Laboratory of Birth Defects Prevention,Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|