1
|
Wu Y, Zhang Q, Jiang W, Gao Y, Qu B, Wang X. CT-based radiomics predicts HRD score and HRD status in patients with ovarian cancer. Front Oncol 2025; 14:1477759. [PMID: 39845327 PMCID: PMC11750671 DOI: 10.3389/fonc.2024.1477759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction This study predicted HRD score and status based on intra- and peritumoral radiomics in patients with ovarian cancer (OC) for better guiding the use of PARPi in clinical. Methods A total of 106 and 95 patients with OC were included between January 2022 and November 2023 for predicting HRD score and status, respectively. Radiomics features were extracted and quantitatively analyzed from intra- and peri-tumor regions in the CT image. Radiomics signatures (RSs) were built based on features from intra- and peri-tumor regions for predicting HRD score and status alone or in combination. Subject working characteristics (ROC) area under the curve (AUC), sensitivity (SEN), and specificity (SPE) were calculated as comparative metrics. Results For predicting HRD score, 4 and 2 features were selected as the most important predictors from the intra- and peritumoral regions, respectively. For predicting HRD status, 4 features from the intratumoral region and 2 from the peritumoral region were identified as the most important predictors. Radiomics nomograms created by combining RSs and important clinical factors showed good predictive results with AUCs of 0.852 (95% confidence interval [CI]: 0.765-0.938, SEN = 0.907, SPE = 0.655) and 0.781 (95% CI: 0.621-0.941, SEN = 0.688, SPE = 0.833) in the training and validation cohort for predicting HRD score, respectively; with AUCs of 0.874 (95% CI: 0.790-0.957, SEN = 0.765, SPE = 0.867) and 0.824 (95% CI: 0.663-0.985, SEN = 0.762, SPE = 0.800) in the training and validation cohort for predicting HRD status, respectively. Discussion Calibration curves and decision curve analysis (DCA) confirmed potential clinical usefulness of our nomograms. Our findings suggest that radiomics features derived from the CT image of OC have the potential to predict HRD score and status, and the developed nomograms can enrich the range of applicable population of PARPi, prolong progression-free survival and provide personalized treatment for OC patients.
Collapse
Affiliation(s)
- Yujiao Wu
- School of Intelligent Medicine, China Medical University, Liaoning, China
| | - Qianhui Zhang
- School of Intelligent Medicine, China Medical University, Liaoning, China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Yuhua Gao
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Bin Qu
- School of Intelligent Medicine, China Medical University, Liaoning, China
| | - Xingling Wang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Zeng S, Wang XL, Yang H. Radiomics and radiogenomics: extracting more information from medical images for the diagnosis and prognostic prediction of ovarian cancer. Mil Med Res 2024; 11:77. [PMID: 39673071 PMCID: PMC11645790 DOI: 10.1186/s40779-024-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/07/2024] [Indexed: 12/15/2024] Open
Abstract
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies globally. Despite the implementation of various medical imaging approaches for OC screening, achieving accurate differential diagnosis of ovarian tumors continues to pose significant challenges due to variability in image performance, resulting in a lack of objectivity that relies heavily on the expertise of medical professionals. This challenge can be addressed through the emergence and advancement of radiomics, which enables high-throughput extraction of valuable information from conventional medical images. Furthermore, radiomics can integrate with genomics, a novel approach termed radiogenomics, which allows for a more comprehensive, precise, and personalized assessment of tumor biological features. In this review, we present an extensive overview of the application of radiomics and radiogenomics in diagnosing and predicting ovarian tumors. The findings indicate that artificial intelligence methods based on imaging can accurately differentiate between benign and malignant ovarian tumors, as well as classify their subtypes. Moreover, these methods are effective in forecasting survival rates, treatment outcomes, metastasis risk, and recurrence for patients with OC. It is anticipated that these advancements will function as decision-support tools for managing OC while contributing to the advancement of precision medicine.
Collapse
Affiliation(s)
- Song Zeng
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin-Lu Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hua Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
3
|
Lan W, Hong J, Huayun T. Advances in ovarian cancer radiomics: a bibliometric analysis from 2010 to 2024. Front Oncol 2024; 14:1456932. [PMID: 39411123 PMCID: PMC11473287 DOI: 10.3389/fonc.2024.1456932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Ovarian cancer, a leading cause of death among gynecological malignancies, often eludes early detection, leading to diagnoses at advanced stages. The objective of this bibliometric analysis is to map the landscape of ovarian cancer radiomics research from 2010 to 2024, emphasizing its growth, global contributions, and the impact of emerging technologies on early diagnosis and treatment strategies. Methods A comprehensive search was conducted using the Web of Science Core Collection (WoSCC), focusing on publications related to radiomics and ovarian cancer within the specified period. Analytical tools such as VOSviewer and CiteSpace were employed to visualize trends, collaborations, and key contributions, while the R programming environment offered further statistical insights. Results From the initial dataset, 149 articles were selected, showing a significant increase in research output, especially in the years 2021-2023. The analysis revealed a dominant contribution from China, with significant inputs from England. Major institutional contributors included the University of Cambridge and GE Healthcare. 'Frontiers in Oncology' emerged as a crucial journal in the field, according to Bradford's Law. Keyword analysis highlighted the focus on advanced imaging techniques and machine learning. Conclusions The steady growth in ovarian cancer radiomics research reflects its critical role in advancing diagnostic and prognostic methodologies, underscoring the potential of radiomics in the shift towards personalized medicine. Despite some methodological challenges, the field's dynamic evolution suggests a promising future for radiomics in enhancing the accuracy of ovarian cancer diagnosis and treatment, contributing to improved patient care and outcomes.
Collapse
Affiliation(s)
| | | | - Tan Huayun
- Department of Obstetrics, Weifang People's Hospital, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Yoo J, Hyun SH, Lee J, Cheon M, Lee KH, Heo JS, Choi JY. Prognostic Significance of 18 F-FDG PET/CT Radiomics in Patients With Resectable Pancreatic Ductal Adenocarcinoma Undergoing Curative Surgery. Clin Nucl Med 2024; 49:909-916. [PMID: 38968550 DOI: 10.1097/rlu.0000000000005363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
PURPOSE This study aimed to investigate the prognostic significance of PET/CT radiomics to predict overall survival (OS) in patients with resectable pancreatic ductal adenocarcinoma (PDAC). METHODS We enrolled 627 patients with resectable PDAC who underwent preoperative 18 F-FDG PET/CT and subsequent curative surgery. Radiomics analysis of the PET/CT images for the primary tumor was performed using the Chang-Gung Image Texture Analysis toolbox. Radiomics features were subjected to least absolute shrinkage and selection operator (LASSO) regression to select the most valuable imaging features of OS. The prognostic significance was evaluated by Cox proportional hazards regression analysis. Conventional PET parameters and LASSO score were assessed as predictive factors for OS by time-dependent receiver operating characteristic curve analysis. RESULTS During a mean follow-up of 28.8 months, 378 patients (60.3%) died. In the multivariable Cox regression analysis, tumor differentiation, resection margin status, tumor stage, and LASSO score were independent prognostic factors for OS (HR, 1.753, 1.669, 2.655, and 2.946; all P < 0.001, respectively). The time-dependent receiver operating characteristic curve analysis showed that the LASSO score had better predictive performance for OS than conventional PET parameters. CONCLUSIONS The LASSO score using the 18 F-FDG PET/CT radiomics of the primary tumor was the independent prognostic factor for predicting OS in patients with resectable PDAC and may be helpful in determining therapeutic and follow-up plans for these patients.
Collapse
Affiliation(s)
- Jang Yoo
- From the Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju
| | - Seung Hyup Hyun
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | - Jaeho Lee
- Department of Preventive Medicine, Seoul National University College of Medicine
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center
| | | | - Jin Seok Heo
- Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
5
|
Chen J, Liu L, He Z, Su D, Liu C. CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:180-195. [PMID: 38343232 DOI: 10.1007/s10278-023-00903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 08/10/2023] [Indexed: 03/02/2024]
Abstract
To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (n = 198) and a test cohort (n = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon-Mann-Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.
Collapse
Affiliation(s)
- Jia Chen
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Medical Imaging, Guangxi Key Clinical Specialty, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Medical Imaging, Dominant Cultivation Discipline of Guangxi Medical, University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Lei Liu
- School of Computer Science and Engineering, Guilin University of Aerospace Technology, 2 Jinji Road, Guilin, Guangxi, People's Republic of China
| | - Ziying He
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Danke Su
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Medical Imaging, Guangxi Key Clinical Specialty, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Medical Imaging, Dominant Cultivation Discipline of Guangxi Medical, University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| | - Chanzhen Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
6
|
Chen J, Yang F, Liu C, Pan X, He Z, Fu D, Jin G, Su D. Diagnostic value of a CT-based radiomics nomogram for discrimination of benign and early stage malignant ovarian tumors. Eur J Med Res 2023; 28:609. [PMID: 38115095 PMCID: PMC10729460 DOI: 10.1186/s40001-023-01561-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND This study aimed to identify the diagnostic value of models constructed using computed tomography-based radiomics features for discrimination of benign and early stage malignant ovarian tumors. METHODS The imaging and clinicopathological data of 197 cases of benign and early stage malignant ovarian tumors (FIGO stage I/II), were retrospectively analyzed. The patients were randomly assigned into training data set and validation data set. Radiomics features were extracted from images of plain computed tomography scan and contrast-enhanced computed tomography scan, were then screened in the training data set, and a radiomics model was constructed. Multivariate logistic regression analysis was used to construct a radiomic nomogram, containing the traditional diagnostic model and the radiomics model. Moreover, the decision curve analysis was used to assess the clinical application value of the radiomics nomogram. RESULTS Six textural features with the greatest diagnostic efficiency were finally screened. The value of the area under the receiver operating characteristic curve showed that the radiomics nomogram was superior to the traditional diagnostic model and the radiomics model (P < 0.05) in the training data set. In the validation data set, the radiomics nomogram was superior to the traditional diagnostic model (P < 0.05), but there was no statistically significant difference compared to the radiomics model (P > 0.05). The calibration curve and the Hosmer-Lemeshow test revealed that the three models all had a great degree of fit (All P > 0.05). The results of decision curve analysis indicated that utilization of the radiomics nomogram to distinguish benign and early stage malignant ovarian tumors had a greater clinical application value when the risk threshold was 0.4-1.0. CONCLUSIONS The computed tomography-based radiomics nomogram could be a non-invasive and reliable imaging method to discriminate benign and early stage malignant ovarian tumors.
Collapse
Affiliation(s)
- Jia Chen
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Fei Yang
- Department of Clinical Medical, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, People's Republic of China
| | - Chanzhen Liu
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Xinwei Pan
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Ziying He
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Danhui Fu
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China
| | - Guanqiao Jin
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| | - Danke Su
- Department of Radiology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Clinical Medical Research Center of Imaging Medicine, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Key Clinical Specialties, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
- Department of Radiology, Guangxi Medical University Cancer Hospital Superiority Cultivation Discipline, 71 Hedi Road, Nanning, Guangxi, People's Republic of China.
| |
Collapse
|
7
|
Travaglio Morales D, Huerga Cabrerizo C, Losantos García I, Coronado Poggio M, Cordero García JM, Llobet EL, Monachello Araujo D, Rizkallal Monzón S, Domínguez Gadea L. Prognostic 18F-FDG Radiomic Features in Advanced High-Grade Serous Ovarian Cancer. Diagnostics (Basel) 2023; 13:3394. [PMID: 37998530 PMCID: PMC10670627 DOI: 10.3390/diagnostics13223394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is an aggressive disease with different clinical outcomes and poor prognosis. This could be due to tumor heterogeneity. The 18F-FDG PET radiomic parameters permit addressing tumor heterogeneity. Nevertheless, this has been not well studied in ovarian cancer. The aim of our work was to assess the prognostic value of pretreatment 18F-FDG PET radiomic features in patients with HGSOC. A review of 36 patients diagnosed with advanced HGSOC between 2016 and 2020 in our center was performed. Radiomic features were obtained from pretreatment 18F-FDGPET. Disease-free survival (DFS) and overall survival (OS) were calculated. Optimal cutoff values with receiver operating characteristic curve/median values were used. A correlation between radiomic features and DFS/OS was made. The mean DFS was 19.6 months and OS was 37.1 months. Total Lesion Glycolysis (TLG), GLSZM_ Zone Size Non-Uniformity (GLSZM_ZSNU), and GLRLM_Run Length Non-Uniformity (GLRLM_RLNU) were significantly associated with DFS. The survival-curves analysis showed a significant difference of DSF in patients with GLRLM_RLNU > 7388.3 versus patients with lower values (19.7 months vs. 31.7 months, p = 0.035), maintaining signification in the multivariate analysis (p = 0.048). Moreover, Intensity-based Kurtosis was associated with OS (p = 0.027). Pretreatment 18F-FDG PET radiomic features GLRLM_RLNU, GLSZM_ZSNU, and Kurtosis may have prognostic value in patients with advanced HGSOC.
Collapse
Affiliation(s)
- Daniela Travaglio Morales
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
- Nuclear Medicine Department, Halle University Hospital, 06120 Halle, Germany
| | - Carlos Huerga Cabrerizo
- Department of Medical Physics and Radiation Protection, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | | - Elena López Llobet
- Nuclear Medicine Department, La Paz University Hospital, 28046 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Adusumilli P, Ravikumar N, Hall G, Swift S, Orsi N, Scarsbrook A. Radiomics in the evaluation of ovarian masses - a systematic review. Insights Imaging 2023; 14:165. [PMID: 37782375 PMCID: PMC10545652 DOI: 10.1186/s13244-023-01500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/12/2023] [Indexed: 10/03/2023] Open
Abstract
OBJECTIVES The study aim was to conduct a systematic review of the literature reporting the application of radiomics to imaging techniques in patients with ovarian lesions. METHODS MEDLINE/PubMed, Web of Science, Scopus, EMBASE, Ovid and ClinicalTrials.gov were searched for relevant articles. Using PRISMA criteria, data were extracted from short-listed studies. Validity and bias were assessed independently by 2 researchers in consensus using the Quality in Prognosis Studies (QUIPS) tool. Radiomic Quality Score (RQS) was utilised to assess radiomic methodology. RESULTS After duplicate removal, 63 articles were identified, of which 33 were eligible. Fifteen assessed lesion classifications, 10 treatment outcomes, 5 outcome predictions, 2 metastatic disease predictions and 1 classification/outcome prediction. The sample size ranged from 28 to 501 patients. Twelve studies investigated CT, 11 MRI, 4 ultrasound and 1 FDG PET-CT. Twenty-three studies (70%) incorporated 3D segmentation. Various modelling methods were used, most commonly LASSO (least absolute shrinkage and selection operator) (10/33). Five studies (15%) compared radiomic models to radiologist interpretation, all demonstrating superior performance. Only 6 studies (18%) included external validation. Five studies (15%) had a low overall risk of bias, 9 (27%) moderate, and 19 (58%) high risk of bias. The highest RQS achieved was 61.1%, and the lowest was - 16.7%. CONCLUSION Radiomics has the potential as a clinical diagnostic tool in patients with ovarian masses and may allow better lesion stratification, guiding more personalised patient care in the future. Standardisation of the feature extraction methodology, larger and more diverse patient cohorts and real-world evaluation is required before clinical translation. CLINICAL RELEVANCE STATEMENT Radiomics shows promising results in improving lesion stratification, treatment selection and outcome prediction. Modelling with larger cohorts and real-world evaluation is required before clinical translation. KEY POINTS • Radiomics is emerging as a tool for enhancing clinical decisions in patients with ovarian masses. • Radiomics shows promising results in improving lesion stratification, treatment selection and outcome prediction. • Modelling with larger cohorts and real-world evaluation is required before clinical translation.
Collapse
Affiliation(s)
- Pratik Adusumilli
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- West Yorkshire Radiology Academy, Level B Clarendon Wing, Leeds General Infirmary, Great George Street, Leeds, LS1 3EX, UK.
| | - Nishant Ravikumar
- Centre for Computational Imaging and Simulation Technologies in Biomedicine, University of Leeds, Leeds, UK
| | - Geoff Hall
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Sarah Swift
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Nicolas Orsi
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Andrew Scarsbrook
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Hatamikia S, Nougaret S, Panico C, Avesani G, Nero C, Boldrini L, Sala E, Woitek R. Ovarian cancer beyond imaging: integration of AI and multiomics biomarkers. Eur Radiol Exp 2023; 7:50. [PMID: 37700218 PMCID: PMC10497482 DOI: 10.1186/s41747-023-00364-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/19/2023] [Indexed: 09/14/2023] Open
Abstract
High-grade serous ovarian cancer is the most lethal gynaecological malignancy. Detailed molecular studies have revealed marked intra-patient heterogeneity at the tumour microenvironment level, likely contributing to poor prognosis. Despite large quantities of clinical, molecular and imaging data on ovarian cancer being accumulated worldwide and the rise of high-throughput computing, data frequently remain siloed and are thus inaccessible for integrated analyses. Only a minority of studies on ovarian cancer have set out to harness artificial intelligence (AI) for the integration of multiomics data and for developing powerful algorithms that capture the characteristics of ovarian cancer at multiple scales and levels. Clinical data, serum markers, and imaging data were most frequently used, followed by genomics and transcriptomics. The current literature proves that integrative multiomics approaches outperform models based on single data types and indicates that imaging can be used for the longitudinal tracking of tumour heterogeneity in space and potentially over time. This review presents an overview of studies that integrated two or more data types to develop AI-based classifiers or prediction models.Relevance statement Integrative multiomics models for ovarian cancer outperform models using single data types for classification, prognostication, and predictive tasks.Key points• This review presents studies using multiomics and artificial intelligence in ovarian cancer.• Current literature proves that integrative multiomics outperform models using single data types.• Around 60% of studies used a combination of imaging with clinical data.• The combination of genomics and transcriptomics with imaging data was infrequently used.
Collapse
Affiliation(s)
- Sepideh Hatamikia
- Research Center for Medical Image Analysis and AI (MIAAI), Danube Private University, Krems, Austria.
- Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria.
| | - Stephanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, University of Montpellier, Montpellier, France
| | - Camilla Panico
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giacomo Avesani
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Camilla Nero
- Scienze Della Salute Della Donna, del bambino e Di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ramona Woitek
- Research Center for Medical Image Analysis and AI (MIAAI), Danube Private University, Krems, Austria
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Xue B, Wang X. Predictive value of PET metabolic parameters for occult lymph node metastases in PET/CT defined node-negative patients with advanced epithelial ovarian cancer. Sci Rep 2023; 13:9439. [PMID: 37296189 PMCID: PMC10256759 DOI: 10.1038/s41598-023-36640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
Accurate lymph node metastasis (LNM) prediction is crucial for patients with advanced epithelial ovarian cancer (AEOC) since it guides the decisions about lymphadenectomy. Previous studies have shown that occult lymph node metastasis (OLNM) is common in AEOC. The objective of our study is to quantitatively assess the probability of occult lymph node metastasis defined by 18F-Fluorodeoxyglucose PET/CT in AEOC and explore relationship between OLNM and PET metabolic parameters. The patients with pathologically confirmed AEOC who underwent PET/CT for preoperative staging at our institute were reviewed. Univariate and multivariate analysis were performed to evaluate the predictive value of PET/CT-related metabolic parameters for OLNM. The result of our study showed metastatic TLG index had a better diagnostic performance than other PET/CT-related metabolic parameters. Two variables were independently and significantly associated with OLNM in multivariate analysis: metastatic TLG index and primary tumor location. The logistic model combining metastatic TLG index, primary tumor location, and CA125 might be a promising tool to effectively predict the individualized possibility of OLNM for AEOC patients.
Collapse
Affiliation(s)
- Bing Xue
- Department of Nuclear Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xihai Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Yoo J, Lee J, Cheon M, Kim H, Choi YS, Pyo H, Ahn MJ, Choi JY. Radiomics Analysis of 18F-FDG PET/CT for Prognosis Prediction in Patients with Stage III Non-Small Cell Lung Cancer Undergoing Neoadjuvant Chemoradiation Therapy Followed by Surgery. Cancers (Basel) 2023; 15:cancers15072012. [PMID: 37046673 PMCID: PMC10093358 DOI: 10.3390/cancers15072012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
We investigated the prognostic significance of radiomic features from 18F-FDG PET/CT to predict overall survival (OS) in patients with stage III NSCLC undergoing neoadjuvant chemoradiation therapy followed by surgery. We enrolled 300 patients with stage III NSCLC who underwent PET/CT at the initial work-up (PET1) and after neoadjuvant concurrent chemoradiotherapy (PET2). Radiomic primary tumor features were subjected to LASSO regression to select the most useful prognostic features of OS. The prognostic significance of the LASSO score and conventional PET parameters was assessed by Cox proportional hazards regression analysis. In conventional PET parameters, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of each PET1 and PET2 were significantly associated with OS. In addition, both the PET1-LASSO score and the PET2-LASSO score were significantly associated with OS. In multivariate Cox regression analysis, only the PET2-LASSO score was an independently significant factor for OS. The LASSO score showed better predictive performance for OS regarding the time-dependent receiver operating characteristic curve and decision curve analysis than conventional PET parameters. Radiomic features from PET/CT were an independent prognostic factor for the estimation of OS in stage III NSCLC. The newly developed LASSO score using radiomic features showed better prognostic results for individualized OS estimation than conventional PET parameters.
Collapse
Affiliation(s)
- Jang Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Jaeho Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Yong Soo Choi
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Joon Young Choi
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2648; Fax: +82-2-3410-2639
| |
Collapse
|
12
|
Panico C, Avesani G, Zormpas-Petridis K, Rundo L, Nero C, Sala E. Radiomics and Radiogenomics of Ovarian Cancer. Radiol Clin North Am 2023; 61:749-760. [PMID: 37169435 DOI: 10.1016/j.rcl.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Ovarian cancer, one of the deadliest gynecologic malignancies, is characterized by high intra- and inter-site genomic and phenotypic heterogeneity. The traditional information provided by the conventional interpretation of diagnostic imaging studies cannot adequately represent this heterogeneity. Radiomics analyses can capture the complex patterns related to the microstructure of the tissues and provide quantitative information about them. This review outlines how radiomics and its integration with other quantitative biological information, like genomics and proteomics, can impact the clinical management of ovarian cancer.
Collapse
|
13
|
Intra- and peritumoral radiomics for predicting early recurrence in patients with high-grade serous ovarian cancer. Abdom Radiol (NY) 2023; 48:733-743. [PMID: 36445408 DOI: 10.1007/s00261-022-03717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To explore values of intra- and peritumoral CT-based radiomics for predicting recurrence in high-grade serous ovarian cancer (HGSOC) patients. METHODS This study enrolled 110 HGSOC patients from our hospital between Aug 2017 and Apr 2021. All patients underwent contrast-enhanced CT scans before treatment. The least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features from intra- and peritumoral areas. Radiomics signatures were built based on selected features from Intra-RS, Peri-RS, and in Com-RS. A nomogram was constructed by combining radiomics signatures and clinical parameters with predictive potential. Receiver operating characteristics (ROC), calibration, and decision curve analyses (DCA) curves were used to evaluate performance of the nomogram. RESULTS The intra- and peritumoral combined Com-RS showed effective ability in predicting recurrent HGSOC in the training (AUCs, Intra-RS vs. Peri-RS vs. Com-RS, 0.861 vs. 0.836 vs. 899) and validation (AUCs, Intra-RS vs. Peri-RS vs. Com-RS, 0.788 vs. 0.762 vs. 815) cohort. The Federation of International of FIGO stage, menstruation, and location were found to be strongly associated with tumor recurrence. The nomogram has the best predictive ability in the training (AUCs, Com-RS vs. clinical model vs. nomogram, 0.899 vs. 0.648 vs. 0.901) and validation (AUCs, Com-RS vs. clinical model vs. nomogram, 0.815 vs. 0.666 vs. 0.818) cohort. CONCLUSION Our findings suggested values of intra- and peritumoral-based radiomics for predicting recurrent HGSOC. The constructed nomogram may be of importance in clinical application.
Collapse
|
14
|
Jiang X, Song J, Duan S, Cheng W, Chen T, Liu X. MRI radiomics combined with clinicopathologic features to predict disease-free survival in patients with early-stage cervical cancer. Br J Radiol 2022; 95:20211229. [PMID: 35604668 PMCID: PMC10162065 DOI: 10.1259/bjr.20211229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To establish a comprehensive model including MRI radiomics and clinicopathological features to predict post-operative disease-free survival (DFS) in early-stage (pre-operative FIGO Stage IB-IIA) cervical cancer. METHODS A total of 183 patients with early-stage cervical cancer admitted to our Jiangsu Province Hospital underwent radical hysterectomy were enrolled in this retrospective study from January 2013 to June 2018 and their clinicopathology and MRI information were collected. They were then divided into training cohort (n = 129) and internal validation cohort (n = 54). The radiomic features were extracted from the pre-operative T1 contrast-enhanced (T1CE) and T2 weighted image of each patient. Least absolute shrinkage and selection operator regression and multivariate Cox proportional hazard model were used for feature selection, and the rad-score (RS) of each patient were evaluated individually. The clinicopathology model, T1CE_RS model, T1CE + T2_RS model, and clinicopathology combined with T1CE_RS model were established and compared. Patients were divided into high- and low-risk groups according to the optimum cut-off values of four models. RESULTS T1CE_RS model showed better performance on DFS prediction of early-stage cervical cancer than clinicopathological model (C-index: 0.724 vs 0.659). T1CE+T2_RS model did not improve predictive performance (C-index: 0.671). The combination of T1CE_RS and clinicopathology features showed more accurate predictive ability (C-index=0.773). CONCLUSION The combination of T1CE_RS and clinicopathology features showed more accurate predictive performance for DFS of patients with early-stage (pre-operative IB-IIA) cervical cancer which can aid in the design of individualised treatment strategies and regular follow-up. ADVANCES IN KNOWLEDGE A radiomics signature composed of T1CE radiomic features combined with clinicopathology features allowed differentiating patients at high or low risk of recurrence.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiacheng Song
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Wenjun Cheng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Chen
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xisheng Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
The Evaluation Value of CT in the Efficacy of Neoadjuvant Chemotherapy in Ovarian Cancer Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7195888. [PMID: 35800240 PMCID: PMC9200539 DOI: 10.1155/2022/7195888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Aim To discuss the evaluation value of CT in the efficacy of neoadjuvant chemotherapy in patients with ovarian cancer. Methods The clinical, pathological, and CT imaging information of 72 patients with ovarian cancer treated in our hospital from January 2018 to January 2022 were retrospectively analyzed. CT examination and pathological examination were compared to evaluate the efficacy of neoadjuvant chemotherapy. Results Using the CRS grading system, 26 cases (36.11%) scored 1, 42 cases (58.33%) scored 2, and 4 cases (5.56%) scored 3. CRS grading system scores of 1, 2, 3, and 4–7 patients were compared, P > 0.05. The CT manifestations of lymphadenectasis, degree of peritoneal thickening, ascites, and maximum length diameter of the mass were compared between the patients before and after chemotherapy, P < 0.05. According to RECIST 1.1, there were 1 (1.39%) CR, 38 (52.78%) PR, 29 (40.28%) SD, and 4 (5.56%) PD. The comparison was done between RECIST 1.1 and CRS grading system, P > 0.05. Conclusion CT could be used to evaluate the efficacy of neoadjuvant chemotherapy for ovarian cancer.
Collapse
|
16
|
PET-CT in Clinical Adult Oncology-IV. Gynecologic and Genitourinary Malignancies. Cancers (Basel) 2022; 14:cancers14123000. [PMID: 35740665 PMCID: PMC9220973 DOI: 10.3390/cancers14123000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Positron emission tomography (PET), typically combined with computed tomography (CT), has become a critical advanced imaging technique in oncology. With concurrently acquired positron emission tomography and computed tomography (PET-CT), a radioactive molecule (radiotracer) is injected in the bloodstream and localizes to sites of tumor because of specific cellular features of the tumor that accumulate the targeting radiotracer. The CT scan provides information to allow better visualization of radioactivity from deep or dense structures and to provide detailed anatomic information. PET-CT has a variety of applications in oncology, including staging, therapeutic response assessment, restaging and surveillance. This series of six review articles provides an overview of the value, applications, and imaging interpretive strategies for PET-CT in the more common adult malignancies. The fourth report in this series provides a review of PET-CT imaging in gynecologic and genitourinary malignancies. Abstract Concurrently acquired positron emission tomography and computed tomography (PET-CT) is an advanced imaging modality with diverse oncologic applications, including staging, therapeutic assessment, restaging and longitudinal surveillance. This series of six review articles focuses on providing practical information to providers and imaging professionals regarding the best use and interpretative strategies of PET-CT for oncologic indications in adult patients. In this fourth article of the series, the more common gynecological and adult genitourinary malignancies encountered in clinical practice are addressed, with an emphasis on Food and Drug Administration (FDA)-approved and clinically available radiopharmaceuticals. The advent of new FDA-approved radiopharmaceuticals for prostate cancer imaging has revolutionized PET-CT imaging in this important disease, and these are addressed in this report. However, [18F]F-fluoro-2-deoxy-d-glucose (FDG) remains the mainstay for PET-CT imaging of gynecologic and many other genitourinary malignancies. This information will serve as a guide for the appropriate role of PET-CT in the clinical management of gynecologic and genitourinary cancer patients for health care professionals caring for adult cancer patients. It also addresses the nuances and provides guidance in the accurate interpretation of FDG PET-CT in gynecological and genitourinary malignancies for imaging providers, including radiologists, nuclear medicine physicians and their trainees.
Collapse
|
17
|
Rundo L, Beer L, Escudero Sanchez L, Crispin-Ortuzar M, Reinius M, McCague C, Sahin H, Bura V, Pintican R, Zerunian M, Ursprung S, Allajbeu I, Addley H, Martin-Gonzalez P, Buddenkotte T, Singh N, Sahdev A, Funingana IG, Jimenez-Linan M, Markowetz F, Brenton JD, Sala E, Woitek R. Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma. Front Oncol 2022; 12:868265. [PMID: 35785153 PMCID: PMC9243357 DOI: 10.3389/fonc.2022.868265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. Methods Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). Results The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. Conclusions CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application.
Collapse
Affiliation(s)
- Leonardo Rundo
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Lucian Beer
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lorena Escudero Sanchez
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mireia Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Marika Reinius
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Cathal McCague
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
| | - Hilal Sahin
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Vlad Bura
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
- Department of Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome—Sant’Andrea University Hospital, Rome, Italy
| | | | - Iris Allajbeu
- Department of Radiology, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Helen Addley
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Paula Martin-Gonzalez
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Buddenkotte
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Naveena Singh
- Department of Clinical Pathology, Barts Health NHS Trust, London, United Kingdom
| | - Anju Sahdev
- Department of Radiology, Barts Health NHS Trust, London, United Kingdom
| | - Ionut-Gabriel Funingana
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Mercedes Jimenez-Linan
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Florian Markowetz
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - James D. Brenton
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Evis Sala
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ramona Woitek
- Department of Radiology, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
19
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
20
|
Fotopoulou C, Rockall A, Lu H, Lee P, Avesani G, Russo L, Petta F, Ataseven B, Waltering KU, Koch JA, Crum WR, Cunnea P, Heitz F, Harter P, Aboagye EO, du Bois A, Prader S. Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC). Br J Cancer 2021; 126:1047-1054. [PMID: 34923575 PMCID: PMC8979975 DOI: 10.1038/s41416-021-01662-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Predictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality. METHODS RPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models. RESULTS The distribution of low, medium and high RPV scores was 54.2% (n = 175), 33.4% (n = 108) and 12.4% (n = 40) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR = 1.69; 95% CI:1.06-2.71; P = 0.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR = 2.02; 95% CI:1.56-2.62; P = 0.00647). CONCLUSIONS RPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine.
Collapse
Affiliation(s)
- Christina Fotopoulou
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.
| | - Andrea Rockall
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK.,Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Haonan Lu
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Philippa Lee
- Department of Radiology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Giacomo Avesani
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Russo
- Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Petta
- Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Beyhan Ataseven
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, University Hospital, LMU Munich, München, Germany
| | - Kai-Uwe Waltering
- Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Jens Albrecht Koch
- Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - William R Crum
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK.,Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK
| | - Paula Cunnea
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Florian Heitz
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Eric O Aboagye
- Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
| | - Sonia Prader
- Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany.,Department of Obstetrics and Gynecology, Brixen General Hospital, Brixen, Italy.,Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|