1
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Jiang X, Yang M, Zhang W, Shi D, Li Y, He L, Huang S, Chen B, Chen X, Kong L, Pan Y, Deng P, Wang R, Ouyang Y, Chen X, Li J, Li Z, Zou H, Zhang Y, Song L. Targeting the SPC25/RIOK1/MYH9 Axis to Overcome Tumor Stemness and Platinum Resistance in Epithelial Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406688. [PMID: 39488790 DOI: 10.1002/advs.202406688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/29/2024] [Indexed: 11/04/2024]
Abstract
In epithelial ovarian cancer (EOC), platinum resistance, potentially mediated by cancer stem cells (CSCs), often leads to relapse and treatment failure. Here, the role of spindle pole body component 25 (SPC25) as a key determinant promoting stemness and platinum resistance in EOC cells, with its expression being correlated with adverse clinical outcomes is delineated. Mechanistically, SPC25 acts as a scaffolding platform, orchestrating the assembly of an SPC25/RIOK1/MYH9 trimeric complex, triggering RIOK1-mediated phosphorylation of MYH9 at Ser1943. This prompts MYH9 to disengage from the cytoskeleton, augmenting its nuclear accumulation, thus potentiating CTNNB1 transcription and subsequent activation of Wnt/β-catenin signaling. CBP1, a competitive inhibitory peptide, can disrupt the formation of the aforementioned trimeric complex, diminishing the activity of the SPC25/RIOK1/MYH9 axis-mediated Wnt/β-catenin signaling, and thus attenuate CSC phenotypes, thereby enhancing platinum efficacy in vitro, in vivo, and in patient-derived organoids. Therefore, targeting the SPC25/RIOK1/MYH9 axis, which mediates the maintenance of stemness and platinum resistance in EOC cells, may enhance platinum sensitivity and increase survival in patients with EOC.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Muwen Yang
- Department of Radiation Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Weijing Zhang
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Xuwei Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Lingzhi Kong
- Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Yibing Pan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Pinwei Deng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Rui Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510060, China
| | - Zheng Li
- Department of Gynecologic Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, 650118, China
| | - Hequn Zou
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yanna Zhang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
3
|
Zhu Q, Chen J, Liu H, Zhao J, Xu C, Sun G, Zeng H. The efficacy and safety of PARP inhibitors in mCRPC with HRR mutation in second-line treatment: a systematic review and bayesian network meta-analysis. BMC Cancer 2024; 24:706. [PMID: 38851712 PMCID: PMC11162002 DOI: 10.1186/s12885-024-12388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION CRD42023454079.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Chenhao Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
4
|
Wei Y, He L, Liu T, Guo T, Xie C, Jia J, Lin Y, Liu J, Fan J. Efficacy and safety of PARP inhibitors combined with antiangiogenic agents in the maintenance treatment of ovarian cancer: a systematic review and meta-analysis with trial sequential analysis of randomized controlled trials. Front Pharmacol 2024; 15:1372077. [PMID: 38584601 PMCID: PMC10995238 DOI: 10.3389/fphar.2024.1372077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/29/2024] [Indexed: 04/09/2024] Open
Abstract
Background: Poly (ADP-ribose) polymerase (PARP) inhibitor and antiangiogenic agent monotherapy have shown to be effective as maintenance treatment in patients with ovarian cancer (OC). However, there is currently a lack of evidence-based study to directly compare the effects of combination therapy with these two drugs. Therefore, this study aimed to compare the efficacy and safety of combination therapy with PARP inhibitors and antiangiogenic agents in women with OC using a meta-analysis. Methods: An exhaustive search of literature was undertaken using multiple databases, including PubMed, Web of Science, Embase, and the Cochrane Library to identify pertinent randomized controlled trials (RCTs) published up until 17 December 2023. The data on progression-free survival (PFS), overall survival (OS), and adverse events (AEs) were pooled. We computed the pooled hazard ratios (HRs) and their 95% confidence intervals (CIs) for PFS and OS, along with the relative risks (RRs) and 95% CIs for AEs. Trial sequential analysis, heterogeneity test, sensitivity analysis, and publication bias assessment were performed. Stata 12.0 and Software R 4.3.1 were utilized for all analyses. Results: This meta-analysis included 7 RCTs with a total of 3,388 participants. The overall analysis revealed that combination therapy of PARP inhibitors and antiangiogenic agents significantly improved PFS (HR = 0.615, 95% CI = 0.517-0.731; 95% PI = 0.379-0.999), but also increased the risk of AEs, including urinary tract infection (RR = 1.500, 95% CI = 1.114-2.021; 95% PI = 0.218-10.346), fatigue (RR = 1.264, 95% CI = 1.141-1.400; 95% PI = 1.012-1.552), headache (RR = 1.868, 95% CI = 1.036-3.369; 95% PI = 0.154-22.642), anorexia (RR = 1.718, 95% CI = 1.320-2.235; 95% PI = 0.050-65.480), and hypertension (RR = 5.009, 95% CI = 1.103-22.744; 95% PI = 0.016-1580.021) compared with PARP inhibitor or antiangiogenic agent monotherapy. Our study has not yet confirmed the benefit of combination therapy on OS in OC patients (HR = 0.885, 95% CI = 0.737-1.063). Additionally, subgroup analyses further showed that combination therapy resulted in an increased risk of AEs, encompassing thrombocytopenia, vomiting, abdominal pain, proteinuria, fatigue, headache, anorexia, and hypertension (all p < 0.05). Conclusion: Our study demonstrated the PFS benefit of combination therapy with PARP inhibitors and antiangiogenic agents in patients with OC. The OS result need to be updated after the original trial data is mature. Clinicians should be vigilant of AEs when administering the combination therapy in clinical practice. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023494482.
Collapse
Affiliation(s)
- Yan Wei
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li He
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Liu
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Guo
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Cong Xie
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jigang Jia
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yonghong Lin
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Liu
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiayin Fan
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Bowling GC, Swargaloganathan P, Heintz C, Madan RA, Eldhose B, Dobi A, Chesnut GT. Hematological Toxicities with PARP Inhibitors in Prostate Cancer: A Systematic Review and Meta-Analysis of Phase II/III Randomized Controlled Trials. Cancers (Basel) 2023; 15:4904. [PMID: 37835597 PMCID: PMC10571760 DOI: 10.3390/cancers15194904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Poly ADP-ribose polymerase inhibitors (PARPis) are an important class of therapeutics for metastatic castration-resistant prostate cancer (mCRPC). Unlike hormone-based treatments for mCRPC, PARPis are not without drug-related hematological adverse events. OBJECTIVE To review the evidence on hematological toxicities, including anemia, thrombocytopenia, and neutropenia from PARPis in prostate cancer. STUDY METHODOLOGY A systematic review and meta-analysis using the PRISMA guidelines was performed for phase II and III randomized controlled trials (RCTs) of PARPis in prostate cancer. PubMed, Embase, and Ovid All EBM reviews-Cochrane were queried from inception to 9 June 2023. The Mantel-Haenszel method was used to report risk ratios (RR) and 95% confidence intervals (CI) for all-grade and high-grade anemia, thrombocytopenia, and neutropenia toxicities. RESULTS The systematic review retrieved eight phase II and III RCTs; specifically, eight were included in the anemia, five in the all-grade thrombocytopenia and neutropenia, and four in the high-grade thrombocytopenia and neutropenia outcomes. Compared to a placebo and/or other non-PARPi treatments, PARPi use was associated with an increased risk of all-grade anemia (RR, 3.37; 95% CI, 2.37-4.79; p < 0.00001), thrombocytopenia (RR, 4.54; 95% CI, 1.97-10.44; p = 0.0004), and neutropenia (RR, 3.11; 95% CI, 1.60-6.03; p = 0.0008). High-grade anemia (RR, 6.94; 95% CI, 4.06-11.86; p < 0.00001) and thrombocytopenia (RR, 5.52; 95% CI, 2.80-10.88; p < 0.00001) were also associated with an increased risk, while high-grade neutropenia (RR, 3.63; 95% CI, 0.77-17.23; p = 0.10) showed no significant association. Subgroup stratification analyses showed differences in various all-grade and high-grade toxicities. CONCLUSION PARPis were associated with an increased risk of hematological AEs. Future studies with more pooled RCTs will enhance this understanding and continue to inform patient-physician shared decision-making. Future studies may also have a role in improving the current management strategies for these AEs.
Collapse
Affiliation(s)
- Gartrell C. Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | | | - Carly Heintz
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
| | - Ravi A. Madan
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Gregory T. Chesnut
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Urology Service, Walter Reed National Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Yang H, Lachtara EM, Ran X, Hopkins J, Patel PS, Zhu X, Xiao Y, Phoon L, Gao B, Zou L, Lawrence MS, Lan L. The RNA m5C modification in R-loops as an off switch of Alt-NHEJ. Nat Commun 2023; 14:6114. [PMID: 37777505 PMCID: PMC10542358 DOI: 10.1038/s41467-023-41790-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
The roles of R-loops and RNA modifications in homologous recombination (HR) and other DNA double-stranded break (DSB) repair pathways remain poorly understood. Here, we find that DNA damage-induced RNA methyl-5-cytosine (m5C) modification in R-loops plays a crucial role to regulate PARP1-mediated poly ADP-ribosylation (PARylation) and the choice of DSB repair pathways at sites of R-loops. Through bisulfite sequencing, we discover that the methyltransferase TRDMT1 preferentially generates m5C after DNA damage in R-loops across the genome. In the absence of m5C, R-loops activate PARP1-mediated PARylation both in vitro and in cells. Concurrently, m5C promotes transcription-coupled HR (TC-HR) while suppressing PARP1-dependent alternative non-homologous end joining (Alt-NHEJ), favoring TC-HR over Alt-NHEJ in transcribed regions as the preferred repair pathway. Importantly, simultaneous disruption of both TC-HR and Alt-NHEJ with TRDMT1 and PARP or Polymerase θ inhibitors prevents alternative DSB repair and exhibits synergistic cytotoxic effects on cancer cells, suggesting an effective strategy to exploit genomic instability in cancer therapy.
Collapse
Affiliation(s)
- Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily M Lachtara
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jessica Hopkins
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Laiyee Phoon
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Boya Gao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Departments of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
8
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Mitomycin C in Homologous Recombination Deficient Metastatic Pancreatic Cancer after Disease Progression on Platinum-Based Chemotherapy and Olaparib. Biomedicines 2022; 10:biomedicines10112705. [PMID: 36359225 PMCID: PMC9687686 DOI: 10.3390/biomedicines10112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Recent efforts to personalize treatment with platinum-based chemotherapy and PARP inhibitors have produced promising results in homologous recombinant deficient (HRD) metastatic pancreatic cancer (MPC). However, new strategies are necessary to overcome resistance. The below case series documents patients treated at the HonorHealth Research Institute with a diagnosis of HRD MPC who received Mitomycin C (MMC) treatment from January 2013 until July 2018. Five HRD MPC patients treated with MMC were evaluated. All patients received at least one course of treatment. Mean age at MMC treatment initiation was 58 years. There were 3 females and 2 males. All patients had tumors that progressed on platinum-based chemotherapy, four patients had previous exposure to Olaparib. The median PFS was 10.1 months, and the median OS was 12.3 months. Responses were observed only in patients harboring BRCA2 mutations, no response was observed in the PALB2 mutation carrier. MMC in this heavily previously treated PC was safe, with overall manageable grade 2 gastrointestinal toxicities including nausea and vomiting, and G3 hematological toxicities including anemia and thrombocytopenia. Pancreatic cancer patients with HRD may benefit from MMC treatment. Further clinical investigation of MMC in pancreatic cancer is warranted.
Collapse
|