1
|
Custódio Dias Duarte B, Ribeiro Queiroz F, Percínio Costa Á, Borges de Melo Neto A, Pereira de Souza Melo C, de Oliveira Salles PG, de Jesus Jeremias W, Lima Bertarini PL, Rodrigues do Amaral L, da Conceição Braga L, de Souza Gomes M, Lopes da Silva Filho A. Upregulation of long non-coding RNA ENSG00000267838 is related to the high risk of progression and non-response to chemoradiotherapy treatment for cervical cancer. Noncoding RNA Res 2025; 11:104-114. [PMID: 39736855 PMCID: PMC11683307 DOI: 10.1016/j.ncrna.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 01/01/2025] Open
Abstract
Cervical cancer (CC) is a global public health concern, primarily caused by persistent infection with oncogenic types of human papillomavirus (HPV). The World Health Organization (WHO) has established a plan to eliminate CC as a public health issue by the year 2100. However, the implementation of the HPV vaccine is impeded by vaccine restrictions and misinformation despite its demonstrated effectiveness. The CC treatment is influenced by the disease stage, with an unfavorable prognosis for those in advanced stages. This study aimed to investigate the potential of long non-coding RNAs (lncRNAs) in CC by identifying and characterizing related lncRNAs, elucidating their regulatory mechanisms and molecular interactions, and analyzing their expression patterns in patients with diverse responses to chemoradiotherapy. Non-stem cells from CC were isolated using flow cytometry sorting and used for total RNA extraction. The RNA was used to build libraries that were subsequently sequenced using the Illumina Nextseq 550.417 lncRNAs that showed differentially expressed between CC patients who responded or not to treatment. Further analysis demonstrated that these lncRNAs significantly interact with several molecules, which play crucial roles in CC progression and therapeutic resistance. Statistical analysis correlated the expression profile of these lncRNAs with treatment efficacy. Three lncRNAs, ENSG00000267838, ENSG00000266340, and FRMD6-AS1, were identified with positive expression related to non-response to chemoradiotherapy and worse progression-free survival in CC patients. Specifically, lncRNA ENSG00000267838 has its up-regulation related to non-response and down-regulation to response to chemoradiotherapy treatment.
Collapse
Affiliation(s)
- Bruna Custódio Dias Duarte
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Fábio Ribeiro Queiroz
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Álvaro Percínio Costa
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| | - Angelo Borges de Melo Neto
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | | | | | - Wander de Jesus Jeremias
- Laboratório de Farmacologia Experimental, Escola de Farmácia, Universidade Federal de Ouro Preto, 35402-163, Ouro Preto, MG, Brazil
| | - Pedro Luiz Lima Bertarini
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Letícia da Conceição Braga
- Laboratório de Pesquisa Translacional Em Oncologia, Instituto Mário Penna, 30380-490, Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, 38702-178, Patos de Minas, MG, Brazil
| | - Agnaldo Lopes da Silva Filho
- Programa de Pós-graduação Em Ciências Aplicadas à Cirurgia e à Oftalmologia, Faculdade de Medicina, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Andrade RLFDE, Ramos APAS, Queiroz FR, Melo Neto ABDE, Gomes MS, Cunha SM, Salles PGO, Melo CPS, Ferreira JGG, Braga LC. Validation of cervical cancer genetic signature in minimally invasive samples. AN ACAD BRAS CIENC 2025; 97:e20240824. [PMID: 39968981 DOI: 10.1590/0001-3765202520240824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/28/2024] [Indexed: 02/20/2025] Open
Abstract
Cervical cancer remains the leading cause of cancer death in 36 countries, and high-risk human papillomavirus types are responsible for most cases. Identifying strategies to make treatment more targeted and effective has become a priority. This study aims to validate a set of differentially expressed genes previously identified in cervical cancer stem cells as predictive biomarkers for response to chemoradiotherapy using minimally invasive samples. Additionally, it aims to elucidate the relationship between high-risk human papillomavirus infection and cervical cancer patients' response to treatment. Gene expression for three differentially expressed genes (COPZ1, ILF2, and SNX2) was evaluated from 20 cervical cancer patients' cervical cytology brushes. Unmapped reads from the same transcriptome were used to evaluate the presence of human papillomavirus in tumor tissue through qualitative screening of 13 high-risk human papillomavirus types. Our study did not clarify the relationship between high-risk human papillomavirus infection and the treatment response. However, we found downregulation of COPZ1 in patients who responded to treatment compared to non-responders, and ILF2 in patients with more advanced tumor stages. This suggests that COPZ1 and ILF2 expressions are potential cervical cancer prognostic biomarkers that can be assessed using samples commonly used in clinical practice.
Collapse
Affiliation(s)
- Rafaela L F DE Andrade
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
- Universidade Federal de São João Del-Rei, Programa de Pós-graduação em Ciências Morfofuncionais, Praça Dom Helvécio, 74, Dom Bosco, 36301-160 São João del Rei, MG, Brazil
| | - Ana Paula A S Ramos
- Universidade Federal de São João Del-Rei, Programa de Pós-graduação em Ciências Morfofuncionais, Praça Dom Helvécio, 74, Dom Bosco, 36301-160 São João del Rei, MG, Brazil
| | - Fábio R Queiroz
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
| | - Angelo B DE Melo Neto
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Campus Patos de Minas, Rua Major Jerônimo, 566, Centro, 38700-002 Patos de Minas, MG, Brazil
| | - Matheus S Gomes
- Universidade Federal de Uberlândia, Laboratório de Bioinformática e Análises Moleculares, Campus Patos de Minas, Rua Major Jerônimo, 566, Centro, 38700-002 Patos de Minas, MG, Brazil
| | - Sidneia M Cunha
- Instituto Mário Penna, Hospital Luxemburgo, Rua Gentios, 1350, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
| | - Paulo G O Salles
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
- Instituto Mário Penna, Hospital Luxemburgo, Rua Gentios, 1350, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
| | - Carolina P S Melo
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
| | - Jorge G G Ferreira
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
| | - Letícia C Braga
- Instituto Mário Penna, Núcleo de Ensino, Pesquisa e Inovação, Rua Gentios, 1420, Bairro Luxemburgo, 30380-490 Belo Horizonte, MG, Brazil
- Universidade Federal de São João Del-Rei, Programa de Pós-graduação em Ciências Morfofuncionais, Praça Dom Helvécio, 74, Dom Bosco, 36301-160 São João del Rei, MG, Brazil
| |
Collapse
|
3
|
Lizano M, Carrillo-García A, De La Cruz-Hernández E, Castro-Muñoz LJ, Contreras-Paredes A. Promising predictive molecular biomarkers for cervical cancer (Review). Int J Mol Med 2024; 53:50. [PMID: 38606495 PMCID: PMC11090266 DOI: 10.3892/ijmm.2024.5374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cervical cancer (CC) constitutes a serious public health problem. Vaccination and screening programs have notably reduced the incidence of CC worldwide by >80%; however, the mortality rate in low‑income countries remains high. The staging of CC is a determining factor in therapeutic strategies: The clinical management of early stages of CC includes surgery and/or radiotherapy, whereas radiotherapy and/or concurrent chemotherapy are the recommended therapeutic strategies for locally advanced CC. The histopathological characteristics of tumors can effectively serve as prognostic markers of radiotherapy response; however, the efficacy rate of radiotherapy may significantly differ among cancer patients. Failure of radiotherapy is commonly associated with a higher risk of recurrence, persistence and metastasis; therefore, radioresistance remains the most important and unresolved clinical problem. This condition highlights the importance of precision medicine in searching for possible predictive biomarkers to timely identify patients at risk of treatment response failure and provide tailored therapeutic strategies according to genetic and epigenetic characteristics. The present review aimed to summarize the evidence that supports the role of several proteins, methylation markers and non‑coding RNAs as potential predictive biomarkers for CC.
Collapse
Affiliation(s)
- Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Adela Carrillo-García
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| | - Erick De La Cruz-Hernández
- Laboratorio de Investigación en Enfermedades Metabólicas e Infecciosas, División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Ranchería Sur Cuarta Sección, Comalcalco City, Tabasco 86650, Mexico
| | | | - Adriana Contreras-Paredes
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico
| |
Collapse
|
4
|
Jafari A, Farahani M, Abdollahpour-Alitappeh M, Manzari-Tavakoli A, Yazdani M, Rezaei-Tavirani M. Unveiling diagnostic and therapeutic strategies for cervical cancer: biomarker discovery through proteomics approaches and exploring the role of cervical cancer stem cells. Front Oncol 2024; 13:1277772. [PMID: 38328436 PMCID: PMC10847843 DOI: 10.3389/fonc.2023.1277772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024] Open
Abstract
Cervical cancer (CC) is a major global health problem and leading cause of cancer deaths among women worldwide. Early detection through screening programs has reduced mortality; however, screening compliance remains low. Identifying non-invasive biomarkers through proteomics for diagnosis and monitoring response to treatment could improve patient outcomes. Here we review recent proteomics studies which have uncovered biomarkers and potential drug targets for CC. Additionally, we explore into the role of cervical cancer stem cells and their potential implications in driving CC progression and therapy resistance. Although challenges remain, proteomics has the potential to revolutionize the field of cervical cancer research and improve patient outcomes.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Rayan Center for Neuroscience and Behavior, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
5
|
Liao L, Huang P, Zhao J, Wang Z, Chen H, Zhang C, Huang L. lncRNA799/TBL1XR1/ZEB1 Axis Forms a Feedback Loop to Promote the Epithelial-Mesenchymal Transition of Cervical Cancer Cells. Crit Rev Eukaryot Gene Expr 2024; 34:33-43. [PMID: 38073440 DOI: 10.1615/critreveukaryotgeneexpr.2023049916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Cervical cancer is a common malignancy among women worldwide. Long non-coding RNAs (lncRNAs) are frequently involved in the pathogenesis of cervical cancer. Therefore, the present study aimed to investigate the potentials of lncRNA799 in cervical cancer. mRNA and protein expression were detected by reverse transcription-quantitative polymerase chain reaction and Western blot analysis, respectively. Cellular functions were assessed using CCK-8, wound healing and transwell analysis. The binding potential of zinc finger E-box-binding homeobox 1 (ZEB1) on the promoter of lncRNA799 was predicted utilizing the JASPAR database, and was then verified by luciferase and chromatin immunoprecipitation (ChIP) assays. Furthermore, the gene interactions were assessed using RNA immunoprecipitation and co-immunoprecipitation assays. The results demonstrated that lncRNA799 was upregulated in cervical cancer cells. However, lncRNA799 deficiency suppressed the proliferation and epithelial-mesenchymal transition of cervical cancer cells. Furthermore, lncRNA799 could interact with eukaryotic translation initiation factor 4A3 to maintain the mRNA stability of transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) and promote the interaction between ZEB1 and TBL1XR1. Additionally, the results showed that ZEB1 could transcriptionally activate lncRNA799. Taken together, the present study suggested that the lncRNA799/TBL1XR1/ZEB1 axis could form a positive feedback loop in cervical cancer and could be, therefore, considered as a potential therapeutic strategy for cervical cancer.
Collapse
Affiliation(s)
- Lingmin Liao
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China
| | - Peng Huang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiali Zhao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ziying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, Jiangxi 330006, China; The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunquan Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Long Huang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, Jiangxi 330006, China; Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
6
|
Yang G, He Y, Chen Y, Huang Z, Huang J, Ren X, Xu S, Li P. Antitumor activity of galaxamide involved in cell apoptosis and stemness by inhibiting Wnt/β-catenin pathway in cervical cancer. Drug Dev Res 2023; 84:1114-1126. [PMID: 37154105 DOI: 10.1002/ddr.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Our previous work reported that galaxamide, a cyclopeptide extracted from the seaweed Galaxaura filamentosa, showed antiproliferative activity against HeLa cells by MTT assay. In this study, the growth-inhibitory effects of galaxamide in HeLa cells and xenograft mouse models were investigated. It was found galaxamide significantly inhibited cell growth, colony formation, migration, and invasion and induced cell apoptosis by inhibiting the Wnt signaling pathway in HeLa cells. RNA sequencing revealed that galaxamide regulated stemness by Wnt6 signaling pathway in HeLa cells. By analyzing The Cancer Genome Atlas database, Wnt6 was found to be negatively/positively correlated with stemness- and apoptosis-related genes in human cervical cancer. Cancer stem-like cells (CSCs) isolated and enriched from HeLa cells demonstrated elevated Wnt6 and β-catenin genes compared with nonstem HeLa cells. After galaxamide treatment, CSCs showed abrogation of sphere-forming ability, along with inhibition of stemness-related and Wnt pathway genes. Galaxamide treatment was also accompanied by the induction of apoptosis in HeLa cells, which was consistent with the results in BALB/c nude mice. Our results provide evidence that suppression of stemness by downregulating the Wnt signaling pathway is the molecular mechanism by which galaxamide effectively inhibits cell growth and induces apoptosis in cervical cancer cells.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
- Department of Chemistry, College of Chemistry and Material Science, Jinan University, Guangzhou, China
| | - Yunbiao He
- Department of Medical Statistics, Jinan University School of Medicine, Guangzhou, China
| | - Yingxing Chen
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Jinan University, Jian University, Guangzhou, China
| | - Zhihan Huang
- Department of Chemistry, College of Chemistry and Material Science, Jinan University, Guangzhou, China
| | - Jieqiong Huang
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Xinyi Ren
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Material Science, Jinan University, Guangzhou, China
| | - Ping Li
- Department of Pathology, Jinan University School of Medicine, Guangzhou, China
| |
Collapse
|
7
|
Parashar D, Singh A, Gupta S, Sharma A, Sharma MK, Roy KK, Chauhan SC, Kashyap VK. Emerging Roles and Potential Applications of Non-Coding RNAs in Cervical Cancer. Genes (Basel) 2022; 13:genes13071254. [PMID: 35886037 PMCID: PMC9317009 DOI: 10.3390/genes13071254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/06/2022] Open
Abstract
Cervical cancer (CC) is a preventable disease using proven interventions, specifically prophylactic vaccination, pervasive disease screening, and treatment, but it is still the most frequently diagnosed cancer in women worldwide. Patients with advanced or metastatic CC have a very dismal prognosis and current therapeutic options are very limited. Therefore, understanding the mechanism of metastasis and discovering new therapeutic targets are crucial. New sequencing tools have given a full visualization of the human transcriptome's composition. Non-coding RNAs (NcRNAs) perform various functions in transcriptional, translational, and post-translational processes through their interactions with proteins, RNA, and even DNA. It has been suggested that ncRNAs act as key regulators of a variety of biological processes, with their expression being tightly controlled under physiological settings. In recent years, and notably in the past decade, significant effort has been made to examine the role of ncRNAs in a variety of human diseases, including cancer. Therefore, shedding light on the functions of ncRNA will aid in our better understanding of CC. In this review, we summarize the emerging roles of ncRNAs in progression, metastasis, therapeutics, chemo-resistance, human papillomavirus (HPV) regulation, metabolic reprogramming, diagnosis, and as a prognostic biomarker of CC. We also discussed the role of ncRNA in the tumor microenvironment and tumor immunology, including cancer stem cells (CSCs) in CC. We also address contemporary technologies such as antisense oligonucleotides, CRISPR-Cas9, and exosomes, as well as their potential applications in targeting ncRNAs to manage CC.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, MI 53226, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| | - Anupam Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India; (A.S.); (S.G.)
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur 572107, Karnataka, India;
| | - Manish K. Sharma
- Department of Biotechnology, IP College, Bulandshahr 203001, Uttar Pradesh, India;
| | - Kuldeep K. Roy
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India;
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Vivek K. Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Correspondence: (D.P.); (V.K.K.); Tel.: +1-414-439-8089 (D.P.); +1-956-296-1738 (V.K.K.)
| |
Collapse
|
8
|
Di Fiore R, Suleiman S, Drago-Ferrante R, Subbannayya Y, Pentimalli F, Giordano A, Calleja-Agius J. Cancer Stem Cells and Their Possible Implications in Cervical Cancer: A Short Review. Int J Mol Sci 2022; 23:ijms23095167. [PMID: 35563557 PMCID: PMC9106065 DOI: 10.3390/ijms23095167] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer (CC) is the fourth most common type of gynecological malignancy affecting females worldwide. Most CC cases are linked to infection with high-risk human papillomaviruses (HPV). There has been a significant decrease in the incidence and death rate of CC due to effective cervical Pap smear screening and administration of vaccines. However, this is not equally available throughout different societies. The prognosis of patients with advanced or recurrent CC is particularly poor, with a one-year relative survival rate of a maximum of 20%. Increasing evidence suggests that cancer stem cells (CSCs) may play an important role in CC tumorigenesis, metastasis, relapse, and chemo/radio-resistance, thus representing potential targets for a better therapeutic outcome. CSCs are a small subpopulation of tumor cells with self-renewing ability, which can differentiate into heterogeneous tumor cell types, thus creating a progeny of cells constituting the bulk of tumors. Since cervical CSCs (CCSC) are difficult to identify, this has led to the search for different markers (e.g., ABCG2, ITGA6 (CD49f), PROM1 (CD133), KRT17 (CK17), MSI1, POU5F1 (OCT4), and SOX2). Promising therapeutic strategies targeting CSC-signaling pathways and the CSC niche are currently under development. Here, we provide an overview of CC and CCSCs, describing the phenotypes of CCSCs and the potential of targeting CCSCs in the management of CC.
Collapse
Affiliation(s)
- Riccardo Di Fiore
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Correspondence: (R.D.F.); (J.C.-A.)
| | - Sherif Suleiman
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
| | | | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe DeGennaro”, 70010 Casamassima, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
- Correspondence: (R.D.F.); (J.C.-A.)
| |
Collapse
|