1
|
Zhou Y, Sun R, Zhang ZW, He XY, Li L, Zhang CJ, Liu Y, Yu HT. Proliferation Inhibited by Genipin in Human Leukemia K562 Cells: Involvement of Uncoupling Protein 2 in Mitochondrial Damage. World J Oncol 2025; 16:83-94. [PMID: 39850526 PMCID: PMC11750759 DOI: 10.14740/wjon1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Background Uncoupling protein 2 (UCP2) is essential for maintaining redox homeostasis and regulating energy metabolism. Abnormal expression of UCP2 has been associated with various tumors, including leukemia. Genipin (GEN), a specific inhibitor of UCP2, has a long history of use in traditional Chinese medicine. However, the precise role and underlying mechanisms of UCP2 in the inhibition of leukemia cells by GEN remain inadequately understood. This study focuses on the expression levels of UCP2 in myeloid leukemia (ML) and investigates the effects of GEN on the proliferation, mitochondrial function, and energy metabolism of the chronic myeloid leukemia (CML) cell line K562. Methods The expression of UCP2 in clinical samples and cell lines (HL-60, U937, and K562) was confirmed using real-time quantitative polymerase chain reaction (qPCR) and western blot. The effects of GEN on K562 cell viability, morphology, and apoptosis were assessed through a cell counting kit-8 (CCK-8), Wright-Giemsa staining, and an annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) apoptosis detection kit. Additionally, the impact of GEN on mitochondrial function and energy metabolism, including reactive oxygen species (ROS), mitochondrial membrane permeability transition pore (MPTP), lactic acid (LA), oxygen consumption rate (OCR), and adenosine triphosphate (ATP) levels in K562 cells, was also examined. Results The results showed that UCP2 was differentially expressed in clinical samples from patients with ML. Among the three cell lines examined, K562 cells exhibited a significantly higher expression level of UCP2. Functionally, GEN markedly inhibited K562 cell viability while promoting K562 cell differentiation and apoptosis. Mechanistically, UCP2 mRNA and protein expression levels were inhibited by GEN in K562 cells in a concentration- and time-dependent manner. Additionally, GEN dramatically increased ROS generation and induced mitochondrial MPTP opening in K562 cells. Furthermore, GEN significantly reduced LA production in K562 cells and markedly increased OCR and ATP production. Conclusion The results suggest that UCP2 is differentially expressed in ML patients and cell lines; GEN, a UCP2 inhibitor, induces mitochondrial damage and metabolic remodeling, thereby inhibiting proliferation and promoting apoptosis in K562 cells, and thus could be suggested as an adjuvant of an antitumor metabolic therapy.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Rui Sun
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Zi Wen Zhang
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xin Yi He
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lin Li
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Chun Jing Zhang
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Hai Tao Yu
- Department of Cell Biology and Genetics, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
2
|
Qi X, Liu Y, Zhou Y, Li H, Yang J, Liu S, He X, Li L, Zhang C, Yu H. A pectic polysaccharide from Typhonii Rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism. Carbohydr Polym 2025; 348:122897. [PMID: 39567133 DOI: 10.1016/j.carbpol.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
The pectic polysaccharide WTRP-A0.2b (43 kDa) has been isolated from Typhonii rhizoma and analyzed in terms of its structural features, anti-tumor activities and mechanism of action. NMR, FT-IR, monosaccharide composition, and enzymology demonstrate that WTRP-A0.2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 3.7:1:1.7, respectively. The RG-I domains contain a highly branched structure that is substituted primarily with β-D-1,4-galactan, α-L-1,5-arabinan, and AG-II. The HG domains contain un-esterified and methyl-esterified and/or acetyl-esterified oligogalacturonides with a degree of polymerization of 1-8. In vitro experiments demonstrate that WTRP-A0.2b inhibits proliferation of K562 cells by inducing mitochondrial damage and suppressing glycolysis. This activity promotes mitochondrial permeability, increases production of reactive oxygen species (ROS), boosts extracellular oxygen consumption and adenosine triphosphate (ATP) content, while it decreases uncoupling protein-2 (UCP2) expression and lactic acid content. Our results provide valuable insight for screening natural polysaccharide-based anti-tumor effects of polysaccharides from Typhonii rhizoma.
Collapse
Affiliation(s)
- Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Ying Liu
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Ying Zhou
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Heqi Li
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Jingyi Yang
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Senyang Liu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Xinyi He
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Lei Li
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Chunjing Zhang
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
3
|
Dong H, Sun K, Wang X, Cui M, Ma Y, Li K, Duan W, Zhang H, Zhang L, Sheng Z, He M, Zhang B. Repurposed genipin targeting UCP2 exhibits antitumor activity through inducing ferroptosis in glioblastoma. Acta Biochim Biophys Sin (Shanghai) 2024; 57:403-414. [PMID: 39523775 PMCID: PMC11986454 DOI: 10.3724/abbs.2024168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 11/16/2024] Open
Abstract
Uncoupling protein-2 (UCP2) controls the antioxidant response and redox homeostasis in cancer and is considered a potent molecular target for cancer treatment. However, the specific mechanism of UCP2 inhibition and its role in glioblastoma (GBM) have not yet been elucidated. Here, we attempt to identify a UCP2 inhibitor and study the underlying molecular mechanism in GBM. Bioinformatics analysis and immunohistochemistry are used to validate the high expression of UCP2 in GBM and its prognostic significance. Drug intervention and tumor xenograft experiments are conducted to determine the inhibitory effect of genipin, a UCP2 inhibitor, on UCP2. The mitochondrial membrane potential and key ferroptosis genes are examined to determine the occurrence of ferroptosis. High expression of UCP2 in GBM is associated with poor prognosis, and inhibiting UCP2 can alleviate the malignant behavior of GBM tumors. Genipin can downregulate the expression of GPX4 and upregulate the expression of ACSL4 by inhibiting UCP2, leading to ferroptosis and alleviating the malignant behavior of tumors. In summary, UCP2 is a potential therapeutic target for GBM. Genipin, which targets UCP2, effectively inhibits GBM development by inducing ferroptosis in vivo and in vitro. These findings indicate that genipin treatment based on UCP2 targeting has potential therapeutic applications with a clinical perspective for the treatment of GBM patients.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Kaixuan Sun
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifang261041China
| | - Xuejie Wang
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Meimei Cui
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Yaping Ma
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Kexin Li
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Wanli Duan
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Hongxing Zhang
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Liying Zhang
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Zhimei Sheng
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| | - Maotao He
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifang261041China
| | - Baogang Zhang
- Department of Diagnostic PathologySchool of Basic Medical SciencesShandong Second Medical UniversityWeifang261042China
| |
Collapse
|
4
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
5
|
Hao L, Li S, Chen G, Hu X. Regulation of UCP2 in nonalcoholic fatty liver disease: From mechanisms to natural product. Chem Biol Drug Des 2024; 103. [DOI: 10.1111/cbdd.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/09/2024] [Indexed: 01/04/2025]
Abstract
AbstractNonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with lipid deposition in liver cells and/or subsequent inflammation, excluding other known causes. NAFLD is a subset of metabolic syndrome that ranges from simple steatohepatitis (NASH), fibrosis to cirrhosis and hepatocellular carcinoma (HCC). At present, the pathogenesis of NAFLD remains unclear. Among the many factors that shape these transitions, uncoupling protein 2 (UCP2) may be involved in every stage of the disease. UCP2 is a carrier protein that responds to fatty acids (FAs) in mitochondrial intima and has a wide tissue distribution. However, the biological function of UCP2 has not been fully elucidated, and most of our current knowledge comes from cell and animal experiments. These data suggest that UCP2 plays a role in lipid metabolism, oxidative stress, apoptosis, and even cancer. In this review, we summarize the structure, distribution, and biological function of UCP2 and its role in the progression of NAFLD, as well as natural products targeting UCP2 to improve NAFLD.
Collapse
Affiliation(s)
- Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
- Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Guo Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
6
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
7
|
Nagao Y, Yokoi A, Yoshida K, Sugiyama M, Watanabe E, Nakamura K, Kitagawa M, Asano-Inami E, Koya Y, Yoshihara M, Tamauchi S, Shimizu Y, Ikeda Y, Yoshikawa N, Kato T, Yamamoto Y, Kajiyama H. Novel therapeutic strategies targeting UCP2 in uterine leiomyosarcoma. Pharmacol Res 2023; 189:106693. [PMID: 36773710 DOI: 10.1016/j.phrs.2023.106693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignant stromal tumor arising from the myometrium with a poor prognosis and very limited response to current chemotherapy. This study aimed to identify novel targets for ULMS through a three-step screening process using a chemical library consisting of 1271 Food and Drug Administration-approved drugs. First, we evaluated their inhibitory effects on ULMS cells and identified four candidates: proscillaridin A, lanatoside C, floxuridine, and digoxin. Then, we subcutaneously or orthotopically transplanted SK-UT-1 cells into mice to establish mouse models. In vivo analyses showed that proscillaridin A and lanatoside C exerted a superior antitumor effect. The results of mRNA sequencing showed that uncoupling protein 2 (UCP2) was suppressed in the sirtuin signaling pathway, increasing reactive oxygen species (ROS) and inducing cell death. Moreover, the downregulation of UCP2 induced ROS and suppressed ULMS cell growth. Furthermore, analyses using clinical samples showed that UCP2 expression was significantly upregulated in ULMS tissues than in myoma tissues both at the RNA and protein levels. These findings suggested that UCP2 is a potential therapeutic target and can contribute to the development of novel therapeutic strategies in patients with ULMS.
Collapse
Affiliation(s)
- Yukari Nagao
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8603, Japan; Japan Science and Technology Agency (JST), FOREST, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan; Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi 464-8603, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Eri Watanabe
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Kae Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan; Center for Low-Temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8603, Japan
| | - Masami Kitagawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Eri Asano-Inami
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Tomoyasu Kato
- Department of Gynecologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| |
Collapse
|
8
|
Koufos O, Mailloux RJ. Protein S-glutathionylation and sex dimorphic effects on hydrogen peroxide production by dihydroorotate dehydrogenase in liver mitochondria. Free Radic Biol Med 2023; 194:123-130. [PMID: 36462627 DOI: 10.1016/j.freeradbiomed.2022.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
Dihydroorotate dehydrogenase (DHODH) oxidizes dihydroorotate to orotate for pyrimidine biosynthesis, donating electrons to the ubiquinone (UQ) pool of mitochondria. DHODH has a measurable rate for hydrogen peroxide (H2O2) production and thus contributes to cellular changes in redox tone. Protein S-glutathionylation serves as a negative feedback loop for the inhibition of H2O2 by several α-keto acid dehydrogenases and respiratory complexes in mitochondria, as well as ROS sources in liver cytoplasm. Here, we report this redox signaling mechanism also inhibits H2O2 production by DHODH in liver mitochondria isolated from male and female C57BL6N mice. We discovered that low amounts of the glutathionylation catalyst, disulfiram (50-500 nM), almost abolished H2O2 production by DHODH in mitochondria from male mice. Similar results were collected with diamide, however, higher doses (1000-5000 μM) were required to elicit this effect. Disulfiram and diamide also significantly suppressed H2O2 production by DHODH in female liver mitochondria. However, liver mitochondria from female mice were more resistant to disulfiram or diamide-mediated inhibition of H2O2 genesis when compared to samples from males. Analysis of the impact of disulfiram and diamide on DHODH activity revealed that both compounds inhibited the dehydrogenase directly, however the effect was less in female mice. Additionally, disulfiram and diamide impeded the use of dihydroorotate fueled oxidative phosphorylation in mitochondria from males and females, although samples collected from female rodents displayed more resistance to this inhibition. Taken together, our findings demonstrate H2O2 production by DHODH can be inhibited by glutathionylation and sex can impact this redox modification.
Collapse
Affiliation(s)
- Olivia Koufos
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- The School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
9
|
Ge Z, Shang Y, Wang W, Yang J, Chen SZ. Brown adipocytes promote epithelial mesenchymal transition of neuroblastoma cells by inducing PPAR-γ/UCP2 expression. Adipocyte 2022; 11:335-345. [PMID: 35531888 PMCID: PMC9122313 DOI: 10.1080/21623945.2022.2073804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Neuroblastoma (NB) is an embryonic malignant tumour of the sympathetic nervous system, and current research shows that activation of brown adipose tissue accelerates cachexia in cancer patients. However, the interaction between brown adipose tissues and NB remains unclear. The study aimed to investigate the effect of brown adipocytes in the co-culture system on the proliferation and migration of NB cells. Brown adipocytes promoted the proliferation and migration of Neuro-2a, BE(2)-M17, and SH-SY5Y cells under the co-culture system, with an increase of the mRNA and protein levels of UCP2 and PPAR-γ in NB cells. The UCP2 inhibitor genipin or PPAR-γ inhibitor T0090709 inhibited the migration of NB cells induced by brown adipocytes. Genipin or siUCP2 upregulated the expression of E-cadherin, and downregulated the expression of N-cadherin and vimentin in NB cells. We suggest that under co-cultivation conditions, NB cells can activate brown adipocytes, which triggers changes in various genes and promotes the proliferation and migration of NB cells. The PPAR-γ/UCP2 pathway is involved in the migration of NB cells caused by brown adipocytes.
Collapse
Affiliation(s)
- Zhijuan Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Northern China, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Northern China, China
| | - Wendie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Northern China, China
| | - Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, Northern China, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Northern China, China
| |
Collapse
|
10
|
Vallejo FA, Sanchez A, Cuglievan B, Walters WM, De Angulo G, Vanni S, Graham RM. NAMPT Inhibition Induces Neuroblastoma Cell Death and Blocks Tumor Growth. Front Oncol 2022; 12:883318. [PMID: 35814452 PMCID: PMC9261286 DOI: 10.3389/fonc.2022.883318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma (NB) portends very poor prognoses in children. Targeting tumor metabolism has emerged as a novel therapeutic strategy. High levels of nicotinamide-adenine-dinucleotide (NAD+) are required for rapid cell proliferation. Nicotinamide phosphoribosyl transferase (NAMPT) is the rate-limiting enzyme for NAD+ salvage and is overexpressed in several cancers. Here, we determine the potential of NAMPT as a therapeutic target for NB treatment. NAMPT inhibition cytotoxicity was determined by trypan blue exclusion and LDH assays. Neuroblastoma stem cell self-renewal was evaluated by neurosphere assay. Protein expression was evaluated via Western blot. The effect of targeting NAMPT in vivo was determined using an NB1691-xenografted mouse model. Robust NAMPT expression was demonstrated in multiple N-MYC amplified, high-risk neuroblastoma cell lines. NAMPT inhibition with STF-118804 (STF) decreased ATP, induced apoptosis, and reduced NB stem cell neurosphere formation. STF treatment down-regulated N-MYC levels and abrogated AKT activation. AKT and glycolytic pathway inhibitors in combination with NAMPT inhibition induced robust, greater-than-additive neuroblastoma cell death. Lastly, STF treatment blocked neuroblastoma tumor growth in mouse xenograft models. NAMPT is a valid therapeutic target as inhibition promoted neuroblastoma cell death in vitro and prevented tumor growth in vivo. Further investigation is warranted to establish this therapy’s role as an adjunctive modality.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Sanchez
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiology and Imaging Sciences, University of Utah Hospital, Salt Lake City, UT, United States
| | - Branko Cuglievan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Winston M. Walters
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Guillermo De Angulo
- Department of Hematology/Oncology and Immunology, Nicklaus Children’s Hospital, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurosurgery, HCA Florida University Hospital, Davie, FL, United States
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, United States
| | - Regina M. Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, United States
- *Correspondence: Regina M. Graham,
| |
Collapse
|
11
|
Sun Y, Bu LG, Wang B, Ren J, Li TY, Kong LL, Ni H. Expression and hormone regulation of UCP2 in goat uterus. Anim Reprod Sci 2022; 243:107015. [PMID: 35689907 DOI: 10.1016/j.anireprosci.2022.107015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/21/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Pregnancy success is closely related to the molecular mechanisms that control energy metabolism balance. However, the mechanisms have not been fully understood. Uncoupling protein 2 (UCP2) plays a physiological role by regulating energy metabolism in numerous tissues. In this study, we determined the expression and hormone regulation of UCP2 in goat uterus. UCP2 is expressed in the luminal and glandular epithelia of goat uterus during early pregnancy, as revealed by in situ hybridization and immunohistochemistry conducted on pregnant goats. The signals were detected from day 0 (D0) to D30 of pregnancy, though weak on D16 (the adhesion period). The low levels of UCP2 on D16 were confirmed by RT-qPCR and western blot. In goat uterus and endometrial epithelial cells (EECs), UCP2 was up-regulated by progesterone and estrogen. In addition, after goat EECs were treated with genipin (an inhibitor of UCP2), not only UCP2 expression but also cell proliferation was inhibited. Collectively, UCP2 is dynamically expressed in goat uterus and can affect EEC proliferation, suggesting that it may participate in regulating the energy metabolism balance of goat uterus during early pregnancy.
Collapse
Affiliation(s)
- Ya Sun
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ge Bu
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Jie Ren
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Ting-Yue Li
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Li-Li Kong
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China
| | - Hua Ni
- The Laboratory of Cell and Developmental Biology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Genipin, an Inhibitor of UCP2 as a Promising New Anticancer Agent: A Review of the Literature. Int J Mol Sci 2022; 23:ijms23105637. [PMID: 35628447 PMCID: PMC9147402 DOI: 10.3390/ijms23105637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/29/2022] Open
Abstract
Genipin is a protein cross-linking agent extracted from Gardenia (Gardenia jasminoides Ellis) fruits. This fruit has conventionally been used as a Chinese herbal medicine for the treatment of inflammation and jaundice and as an edible colorant in oriental countries. Uncoupling protein (UCP)-2 is a member of the family of uncoupling proteins, which are anion transporters positioned in the mitochondrial inner membrane. Genipin has been shown to have hepatoprotective activity, acting as an effective antioxidant and inhibitor of mitochondrial UCP2, and is also reported to exert significant anticancer effects. In this review, the author presents the latest progress of genipin as an anticancer agent and concisely describes its various mechanisms of action. In brief, genipin inhibits UCP2 to attenuate generation of reactive oxygen species (ROS), leading to ROS/c-Jun N-terminal kinase-dependent apoptosis of cancer cells. Genipin also increases the tissue inhibitors of matrix metalloproteases (MMP)-2, a kind of tumor promoter in a variety of cancers, as well as induces caspase-dependent apoptosis in in vitro and in vivo models. These findings suggest that genipin can serve as a promising novel antitumor agent that could be applicable for chemotherapy and/or chemoprevention for cancers.
Collapse
|
13
|
Huang W, Mao L, Xie W, Cai S, Huang Q, Liu Y, Chen Z. Impact of UCP2 depletion on heat stroke-induced mitochondrial function in human umbilical vein endothelial cells. Int J Hyperthermia 2022; 39:287-296. [PMID: 35129048 DOI: 10.1080/02656736.2022.2032846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liangfeng Mao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Sumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qiaobing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, Southern Medical University, Guangzhou, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhongqing Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
14
|
Bryś M, Urbańska K, Olas B. Novel Findings regarding the Bioactivity of the Natural Blue Pigment Genipin in Human Diseases. Int J Mol Sci 2022; 23:902. [PMID: 35055094 PMCID: PMC8776187 DOI: 10.3390/ijms23020902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/16/2022] Open
Abstract
Genipin is an important monoterpene iridoid compound isolated from Gardenia jasminoides J.Ellis fruits and from Genipa americana fruits, or genipap. It is a precursor of a blue pigment which may be attractive alternative to existing food dyes and it possesses various potential therapeutic properties such as anti-cancer, anti-diabetic and hepatoprotective activity. Biomedical studies also show that genipin may act as a neuroprotective drug. This review describes new aspects of the bioactivity of genipin against various diseases, as well as its toxicity and industrial applications, and presents its potential mechanism of action.
Collapse
Affiliation(s)
- Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland;
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
15
|
The Acidic Brain-Glycolytic Switch in the Microenvironment of Malignant Glioma. Int J Mol Sci 2021; 22:ijms22115518. [PMID: 34073734 PMCID: PMC8197239 DOI: 10.3390/ijms22115518] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma represents a fatal disease with a poor prognosis and development of resistance mechanisms against conventional therapeutic approaches. The distinct tumor zones of this heterogeneous neoplasm develop their own microenvironment, in which subpopulations of cancer cells communicate. Adaptation to hypoxia in the center of the expanding tumor mass leads to the glycolytic and angiogenic switch, accompanied by upregulation of different glycolytic enzymes, transporters, and other metabolites. These processes render the tumor microenvironment more acidic, remodel the extracellular matrix, and create energy gradients for the metabolic communication between different cancer cells in distinct tumor zones. Escape mechanisms from hypoxia-induced cell death and energy deprivation are the result. The functional consequences are more aggressive and malignant behavior with enhanced proliferation and survival, migration and invasiveness, and the induction of angiogenesis. In this review, we go from the biochemical principles of aerobic and anaerobic glycolysis over the glycolytic switch, regulated by the key transcription factor hypoxia-inducible factor (HIF)-1α, to other important metabolic players like the monocarboxylate transporters (MCTs)1 and 4. We discuss the metabolic symbiosis model via lactate shuttling in the acidic tumor microenvironment and highlight the functional consequences of the glycolytic switch on glioma malignancy. Furthermore, we illustrate regulation by micro ribonucleic acids (miRNAs) and the connection between isocitrate dehydrogenase (IDH) mutation status and glycolytic metabolism. Finally, we give an outlook about the diagnostic and therapeutic implications of the glycolytic switch and the relation to tumor immunity in malignant glioma.
Collapse
|
16
|
Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci 2021; 22:4642. [PMID: 33924958 PMCID: PMC8125527 DOI: 10.3390/ijms22094642] [Citation(s) in RCA: 1056] [Impact Index Per Article: 264.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Living species are continuously subjected to all extrinsic forms of reactive oxidants and others that are produced endogenously. There is extensive literature on the generation and effects of reactive oxygen species (ROS) in biological processes, both in terms of alteration and their role in cellular signaling and regulatory pathways. Cells produce ROS as a controlled physiological process, but increasing ROS becomes pathological and leads to oxidative stress and disease. The induction of oxidative stress is an imbalance between the production of radical species and the antioxidant defense systems, which can cause damage to cellular biomolecules, including lipids, proteins and DNA. Cellular and biochemical experiments have been complemented in various ways to explain the biological chemistry of ROS oxidants. However, it is often unclear how this translates into chemical reactions involving redox changes. This review addresses this question and includes a robust mechanistic explanation of the chemical reactions of ROS and oxidative stress.
Collapse
Affiliation(s)
- Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 38206 La Laguna, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|