1
|
Mukhopadhyay D, Cocco P, Orrù S, Cherchi R, De Matteis S. The role of MicroRNAs as early biomarkers of asbestos-related lung cancer: A systematic review and meta-analysis. Pulmonology 2025; 31:2416792. [PMID: 38402124 DOI: 10.1016/j.pulmoe.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Asbestos is still the leading cause of occupational cancer mortality worldwide. Asbestos-related lung cancer (LC) and malignant pleural mesothelioma (MPM) prognosis is still poor especially at advanced stage, so early diagnosis biomarkers are needed. MicroRNAs (miRNAs) have been proposed as potential early diagnostic biomarkers of asbestos-related LC and MPM. AIM To evaluate the role of miRNAs as diagnostic and prognostic biomarkers of asbestos-related LC and MPM by performing a literature systematic review and meta-analysis. METHODS MEDLINE, EMBASE via Ovid, PUBMED and Cochrane library databases were systematically searched up to April 2023 to identify relevant articles. A grey literature search was also conducted using the Google Scholar platform. MeSH and free text terms for 'asbestos', 'occupational exposure', 'lung cancer', 'mesothelioma' and 'miRNAs' were used to search the literature. Our systematic review protocol was registered in the PROSPERO database. Study quality was assessed via the Newcastle-Ottawa Scale. RESULTS From the search, 331 articles were retrieved, and, after applying our selection criteria, and exclusion of one study for poor quality, 27 studies were included in the review. Most of the studies were hospital-based case-control, conducted in Europe, and evaluated MPM among men only. MiRNAs expression was measured mainly in plasma or serum. MiR-126, miR-132-3p, and miR-103a-3p were the most promising diagnostic biomarkers for MPM, and we estimated a pooled area under the curve (AUC) of 85 %, 73 %, and 50 %, respectively. In relation to MPM prognosis, miR-197‑3p resulted associated with increased survival time. MiR-126, alone and combined with miR-222, was confirmed associated also to LC diagnosis, together with miR-1254 and miR-574-5p; no miRNA was found associated to LC prognosis. CONCLUSION Based on our systematic literature review there is suggestive evidence that the expression of specific miRNAs in the blood serum or plasma are associated with asbestos-related LC and MPM diagnosis and prognosis. Further large longitudinal studies are urgently needed to validate these findings and elucidate the underlying mechanisms given the potential important implications for patients' survival.
Collapse
Affiliation(s)
- D Mukhopadhyay
- Molecular and Translational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
| | - P Cocco
- Centre for Occupational and Environmental Health, Division of Population Health, Health Services Research & Primary Care, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - S Orrù
- Operative Unit of Medical Genetics, Health Agency of Sardinia, Hospital Binaghi, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Cagliari, Italy
| | - R Cherchi
- Operative Unit of Thoracic Surgery, Hospital G. Brotzu, Cagliari, Italy
| | - S De Matteis
- Department of Health Sciences, University of Milan, Milan, Italy
- NHLI, Imperial College London, United Knigdom
| |
Collapse
|
2
|
Ferrari PA, Salis CB, Macciò A. Current Evidence Supporting the Role of miRNA as a Biomarker for Lung Cancer Diagnosis Through Exhaled Breath Condensate Collection: A Narrative Review. Life (Basel) 2025; 15:683. [PMID: 40430112 PMCID: PMC12113289 DOI: 10.3390/life15050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Lung cancer, the leading cause of cancer-related mortality, has brought exhaled breath condensate (EBC) into focus as a promising non-invasive sample for detecting molecular biomarkers, particularly microRNAs, which regulate gene expression and contribute to tumorigenesis. Ten key studies encompassing approximately 866 subjects consistently demonstrated distinct patterns of miRNA dysregulation in lung cancer. Notably, several reported panels achieved diagnostic sensitivity and specificity exceeding 75% through the identification of distinct miRNA signatures in EBC, with oncogenic miRNAs (e.g., miR-21) upregulated and tumor-suppressor miRNAs (e.g., miR-486) downregulated in lung cancer patients. Analytical advancements, including next-generation sequencing (NGS), have improved miRNA detection sensitivity and specificity, addressing prior limitations of low yield and variability. NGS enabled the identification of novel miRNAs and proved especially effective in overcoming the low RNA yield associated with EBC samples. However, challenges persist regarding standardization of collection, sample dilution, and potential contamination. Moreover, the reproducibility of miRNA signatures across diverse patient populations remains a critical issue. Large-scale, multicenter validation studies are needed to establish robust diagnostic algorithms integrating EBC-derived miRNAs with existing clinical tools. The potential of EBC miRNA profiling to support current screening strategies could significantly improve early lung cancer detection and patient outcomes. Nevertheless, its clinical transition requires further methodological optimization and biomarker validation. This review critically evaluates current evidence on miRNA detection in EBC for lung cancer diagnosis.
Collapse
Affiliation(s)
- Paolo Albino Ferrari
- Division of Thoracic Surgery, Oncology Hospital “A. Businco”, Azienda di Rilievo Nazionale ed Alta Specializzazione “G. Brotzu”, Via Jenner Snc, 09121 Cagliari, Italy
| | - Cosimo Bruno Salis
- Department of Medicine, Surgery and Pharmacology, University of Sassari, Viale San Pietro 43a, 07100 Sassari, Italy;
| | - Antonio Macciò
- Department of Surgical Sciences, University of Cagliari, SS. 554, km 4500, 09042 Monserrato, Italy;
| |
Collapse
|
3
|
Wang S, Chu H, Wang G, Zhang Z, Yin S, Lu J, Dong Y, Zang X, Lv Z. Feasibility of detecting non-small cell lung cancer using exhaled breath condensate metabolomics. J Breath Res 2025; 19:026005. [PMID: 39823648 DOI: 10.1088/1752-7163/adab88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/17/2025] [Indexed: 01/19/2025]
Abstract
Lung cancer is one of the most common malignancy in the world, and early detection of lung cancer remains a challenge. The exhaled breath condensate (EBC) from lung and trachea can be collected totally noninvasively. In this study, our aim is to identify differential metabolites between non-small cell lung cancer (NSCLC) and control EBC samples and discriminate NSCLC group from control group by orthogonal projections to latent structures-discriminant analysis (OPLS-DA) models. The EBC differential metabolites between NSCLC patients (n= 29) and controls (n= 24) (20 healthy and 4 benign individuals) were identified using ultra-performance liquid chromatography-high resolution mass spectrometry based untargeted metabolomics method. The upregulated metabolites in EBC of NSCLC included amino acids and derivatives (phenylalanine, tryptophan, 1-carboxyethylisoleucine/1-carboxyethylleucine, and 2-octenoylglycine), dipeptides (leucyl-phenylalanine, leucyl-leucine, leucyl-histidine/isoleucyl-histidine, and prolyl-valine), and fatty acids (tridecenoic acid, hexadecadienoic acid, tetradecadienoic acid, 9,12,13-trihydroxyoctadec-10-enoic acid/9,10,13-trihydroxyoctadec-11-enoic acid (9,12,13-TriHOME/9,10,13-TriHOME), 3-hydroxysebacic acid/2-hydroxydecanedioic acid, 9-oxooctadeca-10,12-dienoic acid/9,10-Epoxy-12,15-octadecadienoate (9-oxoODE/9(10)-EpODE), and suberic acid). The downregulated metabolites in EBC of NSCLC were 3,4-methylenesebacic acid, 2-isopropylmalic acid/3-isopropylmalic acid/2,3-dimethyl-3-hydroxyglutaric acid, and trimethylamine-N-oxide. The OPLS-DA model based on 5 EBC metabolites achieved 86.2% sensitivity, 83.3% specificity and 84.9% accuracy, showing a potential to distinguish NSCLC patients from controls.
Collapse
Affiliation(s)
- Sha Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Heng Chu
- Department of Thoracic Surgery and Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, People's Republic of China
| | - Guoan Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Department of Thoracic Surgery and Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, People's Republic of China
| | - Zhe Zhang
- Department of Thoracic Surgery and Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, People's Republic of China
| | - Shining Yin
- Qingdao Institute for Food and Drug Control and NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, Shandong 266071, People's Republic of China
| | - Jingguang Lu
- Qingdao Institute for Food and Drug Control and NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao, Shandong 266071, People's Republic of China
| | - Yuehang Dong
- College of Computer Science and Technology, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
4
|
Roca E, Aujayeb A, Astoul P. Diagnosis of Pleural Mesothelioma: Is Everything Solved at the Present Time? Curr Oncol 2024; 31:4968-4983. [PMID: 39329996 PMCID: PMC11430569 DOI: 10.3390/curroncol31090368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Ranked high in worldwide growing health issues, pleural diseases affect approximately one million people globally per year and are often correlated with a poor prognosis. Among these pleural diseases, malignant pleural mesothelioma (PM), a neoplastic disease mainly due to asbestos exposure, still remains a diagnostic challenge. Timely diagnosis is imperative to define the most suitable therapeutic approach for the patient, but the choice of diagnostic modalities depends on operator experience and local facilities while bearing in mind the yield of each diagnostic procedure. Since the analysis of pleural fluid cytology is not sufficient in differentiating historical features in PM, histopathological and morphological features obtained via tissue biopsies are fundamental. The quality of biopsy samples is crucial and often requires highly qualified expertise. Since adequate tissue biopsy is essential, medical or video-assisted thoracoscopy (MT or VATS) is proposed as the most suitable approach, with the former being a physician-led procedure. Indeed, MT is the diagnostic gold standard for malignant pleural pathologies. Moreover, this medical or surgical approach can allow diagnostic and therapeutic procedures: it provides the possibility of video-assisted biopsies, the drainage of high volumes of pleural fluid and the administration of sterile calibrated talcum powder under visual control in order to achieve pleurodesis, placement of indwelling pleural catheters if required and in a near future potential intrapleural therapy. In this context, dedicated diagnostic pathways remain a crucial need, especially to quickly and properly diagnose PM. Lastly, the interdisciplinary approach and multidisciplinary collaboration should always be implemented in order to direct the patient to the best customised diagnostic and therapeutic pathway. At the present time, the diagnosis of PM remains an unsolved problem despite MDT (multidisciplinary team) meetings, mainly because of the lack of standardised diagnostic work-up. This review aims to provide an overview of diagnostic procedures in order to propose a clear strategy.
Collapse
Affiliation(s)
- Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda, VR, Italy;
| | - Avinash Aujayeb
- Respiratory Department, Northumbria Health Care NHS Foundation Trust, Care of Gail Hewitt, Newcastle NE23 6NZ, UK;
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, North Hospital, Aix-Marseille University, Chemin des Bourrely, 13005 Marseille, France
- La Timone Campus, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
5
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
6
|
Mitchell MI, Ben-Dov IZ, Liu C, Wang T, Hazan RB, Bauer TL, Zakrzewski J, Donnelly K, Chow K, Ma J, Loudig O. Non-invasive detection of orthotopic human lung tumors by microRNA expression profiling of mouse exhaled breath condensates and exhaled extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:138-164. [PMID: 38863869 PMCID: PMC11165456 DOI: 10.20517/evcna.2023.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Aim The lung is the second most frequent site of metastatic dissemination. Early detection is key to improving survival. Given that the lung interfaces with the external environment, the collection of exhaled breath condensate (EBC) provides the opportunity to obtain biological material including exhaled miRNAs that originate from the lung. Methods In this proof-of-principal study, we used the highly metastatic MDA-MB-231 subline 3475 breast cancer cell line (LM-3475) to establish an orthotopic lung tumor-bearing mouse model and investigate non-invasive detection of lung tumors by analysis of exhaled miRNAs. We initially conducted miRNA NGS and qPCR validation analyses on condensates collected from unrestrained animals and identified significant miRNA expression differences between the condensates of lung tumor-bearing and control mice. To focus our purification of EBC and evaluate the origin of these differentially expressed miRNAs, we developed a system to collect EBC directly from the nose and mouth of our mice. Results Using nanoparticle distribution analyses, TEM, and ONi super-resolution nanoimaging, we determined that human tumor EVs could be increasingly detected in mouse EBC during the progression of secondary lung tumors. Using our customizable EV-CATCHER assay, we purified human tumor EVs from mouse EBC and demonstrated that the bulk of differentially expressed exhaled miRNAs originate from lung tumors, which could be detected by qPCR within 1 to 2 weeks after tail vein injection of the metastatic cells. Conclusion This study is the first of its kind and demonstrates that lung tumor EVs are exhaled in mice and provide non-invasive biomarkers for detection of lung tumors.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Christina Liu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Rachel B. Hazan
- Department of Pathology, The Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Thomas L. Bauer
- Jersey Shore University Medical Center, Hackensack Meridian Health, Neptune City, NJ 07753, USA
| | - Johannes Zakrzewski
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Kathryn Donnelly
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
| | - Kar Chow
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ 07601, USA
| |
Collapse
|
7
|
Rai D, Pattnaik B, Bangaru S, Tak J, Kumari J, Verma U, Vadala R, Yadav G, Dhaliwal RS, Kumar S, Kumar R, Jain D, Luthra K, Chosdol K, Palanichamy JK, Khan MA, Surendranath A, Mittal S, Tiwari P, Hadda V, Madan K, Agrawal A, Guleria R, Mohan A. microRNAs in exhaled breath condensate for diagnosis of lung cancer in a resource-limited setting: a concise review. Breathe (Sheff) 2023; 19:230125. [PMID: 38351949 PMCID: PMC10862127 DOI: 10.1183/20734735.0125-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is one of the common cancers globally with high mortality and poor prognosis. Most cases of lung cancer are diagnosed at an advanced stage due to limited diagnostic resources. Screening modalities, such as sputum cytology and annual chest radiographs, have not proved sensitive enough to impact mortality. In recent years, annual low-dose computed tomography has emerged as a potential screening tool for early lung cancer detection, but it may not be a feasible option for developing countries. In this context, exhaled breath condensate (EBC) analysis has been evaluated recently as a noninvasive tool for lung cancer diagnosis. The breath biomarkers also have the advantage of differentiating various types and stages of lung cancer. Recent studies have focused more on microRNAs (miRNAs) as they play a key role in tumourigenesis by regulating the cell cycle, metastasis and angiogenesis. In this review, we have consolidated the current published literature suggesting the utility of miRNAs in EBC for the detection of lung cancer.
Collapse
Affiliation(s)
- Divyanjali Rai
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Bijay Pattnaik
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Bangaru
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jaya Tak
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Jyoti Kumari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Umashankar Verma
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rohit Vadala
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Yadav
- Indian Council of Medical Research, New Delhi, India
| | | | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Maroof Ahmad Khan
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Addagalla Surendranath
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Mittal
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Pawan Tiwari
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Hadda
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anurag Agrawal
- Trivedi School of Biosciences, Ashoka University, Sonipat, India
| | - Randeep Guleria
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Breathomics in Respiratory Diseases Lab, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Kaba M, Pirinççi N, Demir M, Kaba S, Oztuzcu S, Verep S. The relationship between microRNAs and bladder cancer: are microRNAs useful to predict bladder cancer in suspicious patients? Int Urol Nephrol 2023; 55:2483-2491. [PMID: 37338656 DOI: 10.1007/s11255-023-03666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE Recent studies indicate that circulating micro RNAs (miRNAs) are novel class of non-invasive biomarkers with diagnostic and prognostic information. We evaluated the miRNA expressions in bladder cancer (BC) and their associations with disease diagnosis. METHODS We profiled the expressions of 379 miRNAs in the plasma samples from patients with non-muscle invasive bladder cancer (NMIBC) (n = 34) and non-malignant urological diseases as a control group (n = 32). Patients were evaluated regarding with age, miRNA expressions, by using descriptive statistics. miRNA expression in extracted RNA was quantified using the NanoString nCounter Digital Analyzer. RESULTS The analysis of plasma miRNA levels in the marker identification cohort indicated that plasma (miR-1260a, let-7a-3p miR-196b-5p, miR-196a-5p, miR-99a-5p, miR-615-5p, miR-4301, miR-28-3p, miR-4538, miR-1233-3p, miR-4732-5p, miR-1913, miR-1280) levels were increased in NMIBC patients compared to control subjects. There were no significant differences other parameters studied between groups. CONCLUSIONS The analysis of serum plasma miRNA (miR-1260a, let-7a-3p miR-196b-5p, miR-196a-5p, miR-99a-5p, miR-615-5p, miR-4301, miR-28-3p, miR-4538, miR-1233-3p, miR-4732-5p, miR-1913, miR-1280) levels could be useful plasma biomarkers for BC.
Collapse
Affiliation(s)
- Mehmet Kaba
- Department of Urology, Private Yuzyil Gebze Hospital, Sultan Orhan Mahallesi, Ilyasbey Cd. No:38, 41400, Gebze, Kocaeli, Turkey
| | - Necip Pirinççi
- Department of Urology, Fırat University Medical Faculty, Elazıg, Turkey
| | - Murat Demir
- Department of Urology, Van Yuzuncuyil University Dursun Odabası Medical Center, Van, Turkey
| | - Sultan Kaba
- Department of Pediatry, Okan University Hospital, Section of Pediatric Endocrinology, Istanbul, Turkey
| | - Serdar Oztuzcu
- Department of Medical Biology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Samed Verep
- Department of Urology, Private Yuzyil Gebze Hospital, Sultan Orhan Mahallesi, Ilyasbey Cd. No:38, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
9
|
Ramírez-Solano MA, Córdova EJ, Orozco L, Tejero ME. Plasma MicroRNAs Related to Metabolic Syndrome in Mexican Women. Lifestyle Genom 2023; 16:165-176. [PMID: 37708875 DOI: 10.1159/000534041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
INTRODUCTION The metabolic syndrome (MetS) is a cluster of abnormalities related to cardiovascular disease (CVD). Circulating miRNAs (c-miRNAs) are non-coding RNAs associated with different phenotypes, some of them integrating the MetS. The aim of the study was to compare the c-miRNAs profile in plasma between women with MetS and controls and explore their possible association with dysregulation of metabolic pathways. METHODS The study was conducted in two phases. At the screening phase, miRNA composition in fasting plasma was compared between 8 participants with MetS and 10 healthy controls, using microarray technology. The validation phase included the analysis by qRT-PCR of 10 selected c-miRNAs in an independent sample (n = 29). RESULTS We found 21 c-miRNAs differentially expressed between cases and controls. The concentration in plasma of the c-miRNAs hsa-miR-1260a, hsa-miR-4514, and hsa-miR-4687-5p were also correlated with risk factors for CVD. Differences of hsa-miR-1260a between cases and controls were validated using qRT-PCR (fold-change = 7.0; p = 0.003). CONCLUSION The signature of plasma c-miRNAs differed between women with MetS and controls. The identified miRNAs regulate pathways related to the MetS such as insulin resistance and adipokine activity. The role of c-miR-1260a in the MetS remains to be elucidated.
Collapse
Affiliation(s)
- Marisol Adelina Ramírez-Solano
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Maestría en Bioquímica Clínica, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emilio J Córdova
- Consorcio Oncogenómica y Enfermedades Óseas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Lorena Orozco
- Laboratorio de Inmunogenómica y Enfermedades Complejas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - María Elizabeth Tejero
- Laboratorio de Nutrigenómica y Nutrigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
10
|
Araki Y, Asano N, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Higuchi T, Abe K, Taniguchi Y, Yonezawa H, Morinaga S, Asano Y, Yoshida T, Hanayama R, Matsuzaki J, Ochiya T, Kawai A, Tsuchiya H. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol Lett 2023; 25:222. [PMID: 37153065 PMCID: PMC10157352 DOI: 10.3892/ol.2023.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
In our previous study, osteosarcoma advanced locally, and metastasis was promoted through the secretion of large number of small extracellular vesicles, followed by suppressing osteoclastogenesis via the upregulation of microRNA (miR)-146a-5p. An additional 12 miRNAs in small extracellular vesicles were also detected ≥6× as frequently in high-grade malignancy with the capacity to metastasize as in those with a low metastatic potential. However, the utility of these 13 miRNAs for determining the prognosis or diagnosis of osteosarcoma has not been validated in the clinical setting. In the present study, the utility of these miRNAs as prognostic and diagnostic markers was therefore assessed. In total, 30 patients with osteosarcoma were retrospectively reviewed, and the survival rate was compared according to the serum miRNA levels in 27 patients treated with chemotherapy and surgery. In addition, to confirm diagnostic competency for osteosarcoma, the serum miRNA levels were compared with those in patients with other bone tumors (n=112) and healthy controls (n=275). The patients with osteosarcoma with high serum levels of several miRNAs (miR-146a-5p, miR-1260a, miR-487b-3p, miR-1260b and miR-4758-3p) exhibited an improved survival rate compared with those with low levels. In particular, patients with high serum levels of miR-1260a exhibited a significantly improved overall survival rate, metastasis-free survival rate and disease-free survival rate compared with those with low levels. Thus, serum miR-1260a may potentially be a prognostic marker for patients with osteosarcoma. Moreover, patients with osteosarcoma had higher serum miR-1261 levels than those with benign or intermediate-grade bone tumors and thus may be a potential therapeutic target, in addition to being useful for differentiating whether or not a bone tumor is high-grade. A larger investigation is required to clarify the actual utility of these miRNAs in the clinical setting.
Collapse
Affiliation(s)
- Yoshihiro Araki
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Naofumi Asano
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
- Correspondence to: Professor Norio Yamamoto, Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan, E-mail:
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Akihiko Takeuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takashi Higuchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kensaku Abe
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yuta Taniguchi
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hirotaka Yonezawa
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sei Morinaga
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yohei Asano
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takeshi Yoshida
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo 105-8512, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
11
|
Liu Y, He L, Wang W. Systematic assessment of microRNAs associated with lung cancer and physical exercise. Front Oncol 2022; 12:917667. [PMID: 36110941 PMCID: PMC9468783 DOI: 10.3389/fonc.2022.917667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
It has long been evident that physical exercise reduces the risk of cancer and improves treatment efficacy in tumor patients, particularly in lung cancer (LC). Several molecular mechanisms have been reported, but the mechanisms related to microRNAs (miRNAs) are not well understood. MiRNAs modulated various basic biological processes by negatively regulating gene expression and can be transmitted between cells as signaling molecules. Recent studies have shown that miRNAs are actively released into the circulation during exercise, and are deeply involved in cancer pathology. Hence, the role of exercise intervention in LC treatment may be further understood by identifying miRNAs associated with LC and physical activity. Here, miRNAs expression datasets related to LC and exercise were collected to screen altered miRNAs. Further bioinformatic approaches were performed to analyze the value of the selected miRNAs. The results identified 42 marker miRNAs in LC, of which three core-miRNAs (has-miR-195, has-miR-26b, and has-miR-126) were co-regulated by exercise and cancer, mainly involved in cell cycle and immunity. Our study supports the idea that using exercise intervention as adjuvant therapy for LC patients. These core-miRNAs, which are down-regulated in cancer but elevated by exercise, may act as suppressors in LC and serve as non-invasive biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Yang Liu,
| | - Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wang Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Medicine, Nanchang Medical College, Nanchang, China
| |
Collapse
|
12
|
Sajjadi E, Gaudioso G, Terrasi A, Boggio F, Venetis K, Ivanova M, Bertolasi L, Lopez G, Runza L, Premoli A, Lorenzini D, Guerini-Rocco E, Ferrero S, Vaira V, Fusco N. Osteoclast-like stromal giant cells in breast cancer likely belong to the spectrum of immunosuppressive tumor-associated macrophages. Front Mol Biosci 2022; 9:894247. [PMID: 36090031 PMCID: PMC9462457 DOI: 10.3389/fmolb.2022.894247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Breast cancer with osteoclast-like stromal giant cells (OSGC) is an exceedingly rare morphological pattern of invasive breast carcinoma. The tumor immune microenvironment (TIME) of these tumors is populated by OSGC, which resemble osteoclasts and show a histiocytic-like immunophenotype. Their role in breast cancer is unknown. The osteoclast maturation in the bone is regulated by the expression of cytokines that are also present in the TIME of tumors and in breast cancer tumor-associated macrophages (TAMs). TAMs-mediated anti-tumor immune pathways are regulated by miRNAs akin to osteoclast homeostasis. Here, we sought to characterize the different cellular compartments of breast cancers with OSGC and investigate the similarities of OSGC with tumor and TIME in terms of morphology, protein, and miRNA expression, specifically emphasizing on monocytic signatures. Methods and Results: Six breast cancers with OSGC were included. Tumor-infiltrating lymphocytes (TILs) and TAMs were separately quantified. The different cellular populations (i.e., normal epithelium, cancer cells, and OSGC) were isolated from tissue sections by laser-assisted microdissection. After RNA purification, 752 miRNAs were analyzed using a TaqMan Advanced miRNA Low-Density Array for all samples. Differentially expressed miRNAs were identified by computing the fold change (log2Ratio) using the Kolmogorov-Smirnov test and p values were corrected for multiple comparisons using the false discovery rate (FDR) approach. As a similarity analysis among samples, we used the Pearson test. The association between pairs of variables was investigated using Fisher exact test. Classical and non-classical monocyte miRNA signatures were finally applied. All OSGC displayed CD68 expression, TILs (range, 45–85%) and high TAMs (range, 35–75%). Regarding the global miRNAs profile, OSGC was more similar to cancer cells than to non-neoplastic ones. Shared deregulation of miR-143-3p, miR-195-5p, miR-181a-5p, and miR-181b-5p was observed between OSGC and cancer cells. The monocyte-associated miR-29a-3p and miR-21-3p were dysregulated in OSGCs compared with non-neoplastic or breast cancer tissues. Conclusion: Breast cancers with OSGC have an activated TIME. Shared epigenetic events occur during the ontogenesis of breast cancer cells and OSGC but the innumophenotype and miRNA profiles of the different cellular compartmens suggest that OSGC likely belong to the spectrum of M2 TAMs.
Collapse
Affiliation(s)
- Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Gabriella Gaudioso
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Terrasi
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich, Germany
| | - Francesca Boggio
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Letizia Bertolasi
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Alice Premoli
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Lorenzini
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| | - Valentina Vaira
- Division of Pathology, Fondazione IRCCS Ca’ Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- *Correspondence: Nicola Fusco,
| |
Collapse
|
13
|
miRNAs in Cancer (Review of Literature). Int J Mol Sci 2022; 23:ijms23052805. [PMID: 35269947 PMCID: PMC8910953 DOI: 10.3390/ijms23052805] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding, single-stranded RNA molecules that regulate gene expression at the post-transcriptional level by binding to mRNAs. miRNAs affect the course of processes of fundamental importance for the proper functioning of the organism. These processes include cell division, proliferation, differentiation, cell apoptosis and the formation of blood vessels. Altered expression of individual miRNAs has been shown in numerous cancers, which may indicate the oncogenic or suppressor potential of the molecules in question. This paper discusses the current knowledge about the possibility of using miRNA as a diagnostic marker and a potential target in modern anticancer therapies.
Collapse
|