1
|
Behrouzi R, Clipson A, Simpson KL, Blackhall F, Rothwell DG, Dive C, Mouliere F. Cell-free and extrachromosomal DNA profiling of small cell lung cancer. Trends Mol Med 2025; 31:64-78. [PMID: 39232927 DOI: 10.1016/j.molmed.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024]
Abstract
Small cell lung cancer (SCLC) is highly aggressive with poor prognosis. Despite a relative prevalence of circulating tumour DNA (ctDNA) in SCLC, liquid biopsies are not currently implemented, unlike non-SCLC where cell-free DNA (cfDNA) mutation profiling in the blood has utility for guiding targeted therapies and assessing minimal residual disease. cfDNA methylation profiling is highly sensitive for SCLC detection and holds promise for disease monitoring and molecular subtyping; cfDNA fragmentation profiling has also demonstrated clinical potential. Extrachromosomal DNA (ecDNA), that is often observed in SCLC, promotes tumour heterogeneity and chemotherapy resistance and can be detected in blood. We discuss how these cfDNA profiling modalities can be harnessed to expand the clinical applications of liquid biopsy in SCLC.
Collapse
Affiliation(s)
- Roya Behrouzi
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK; Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Alexandra Clipson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Kathryn L Simpson
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK; Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Florent Mouliere
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Zhang X, Yu Z, Xu Y, Chao Y, Hu Q, Li C, Ye M, Zhu X, Cui L, Bai J, Gong Y, Guan Y, Zhou M, Huang J, Zhang H, Ren T, Shen Q, Wang K, Hou Y, Xia X, Pu X, Carbone DP, Zhang X. Utility of cell-free DNA from bronchial washing fluid in diagnosis and genomic determination for radiology-suspected pulmonary nodules. Br J Cancer 2022; 127:2154-2165. [PMID: 36253524 PMCID: PMC9727069 DOI: 10.1038/s41416-022-01969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.
Collapse
Affiliation(s)
- Xinyu Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Zhuo Yu
- Beijing Tsinghua Changgung Hospital, 168 Litang Road, Changping District, 102218, Beijing, China
| | - Yaping Xu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yencheng Chao
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Qin Hu
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Chun Li
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Maosong Ye
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xiuli Zhu
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Liang Cui
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jing Bai
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yuhua Gong
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yanfang Guan
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Min Zhou
- Ruijin Hospital, Shanghai Jiao Tong University, No. 197 Ruijin Second Road, Huangpu District, 200025, Shanghai, China
| | - Jian'an Huang
- First People's Hospital, Suzhou University, No. 899 Pinghai Road, Gusu District, 215008, Suzhou, China
| | - Hua Zhang
- Zhengzhou Central Hospital, Zhengzhou University, No. 195 Tongbai Road, Zhongyuan District, 450000, Zhengzhou, China
| | - Tao Ren
- Shanghai Sixth People's Hospital, No 600 Yishan Road, Xuhui District, 200233, Shanghai, China
| | - Qian Shen
- First Affiliated Hospital of Zhejiang University, No. 79 Qingchun Road, Shangcheng District, 310002, Hangzhou, China
| | - Kai Wang
- Fourth Affiliated Hospital of Zhejiang University, No 88 Jiefang Road, Shangcheng District, 310002, Hangzhou, China
| | - Yingyong Hou
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, 9th Floor, No. 6 Building, Peking University Medical Industrial Park, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Xingxiang Pu
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, 410013, Changsha, Hunan, China.
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, 460W 12th Ave., Columbus, OH, 43210, USA.
| | - Xin Zhang
- Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, 200032, Shanghai, China.
| |
Collapse
|
3
|
Shen F, Liang N, Fan Z, Zhao M, Kang J, Wang X, Hu Q, Mu Y, Wang K, Yuan M, Chen R, Guo W, Dong G, Zhao J, Bai J. Genomic Alterations Identification and Resistance Mechanisms Exploration of NSCLC With Central Nervous System Metastases Using Liquid Biopsy of Cerebrospinal Fluid: A Real-World Study. Front Oncol 2022; 12:889591. [PMID: 35814426 PMCID: PMC9259993 DOI: 10.3389/fonc.2022.889591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Genomic profiling of cerebrospinal fluid (CSF) can be used to detect actionable mutations and guide clinical treatment of non-small cell lung cancer (NSCLC) patients with central nervous system (CNS) metastases. Examining the performance of CSF samples in real-world settings can confirm the potential of CSF genotyping for guiding therapy in clinical practice. Patients and Methods We included 1,396 samples from 970 NSCLC patients with CNS metastases in real-world settings. All samples underwent targeted next-generation sequencing of 1,021 cancer-relevant genes. In total, 100 CSF samples from 77 patients who had previously received targeted treatment were retrospectively analyzed to explore the mechanisms of TKI-resistance. Results For NSCLC patients with CNS metastases, CSF samples were slightly more often used for genomic sequencing in treated patients with only distant CNS metastases compared to other patients (10.96% vs. 0.81–9.61%). Alteration rates in CSF samples were significantly higher than those in plasma, especially for copy number variants (CNV). The MSAFs of CSF samples were significantly higher than those of plasma and tumor tissues (all p <0.001). Remarkably, detection rates of all actionable mutations and EGFR in CSF were higher than those in plasma samples of treated patients (all p <0.0001). For concordance between paired CSF and plasma samples that were simultaneously tested, the MSAF of the CSF was significantly higher than that of matched plasma cfDNA (p <0.001). From multiple comparisons, it can be seen that CSF better detects alterations compared to plasma, especially CNV and structural variant (SV) alterations. CSF cfDNA in identifying mutations can confer the reason for the limited efficacy of EGFR-TKIs for 56 patients (78.87%, 56/71). Conclusions This real-world large cohort study confirmed that CSF had higher sensitivity than plasma in identifying actionable mutations and showed high potential in exploring underlying resistance mechanisms. CSF can be used in genomics profiling to facilitate the broad exploration of potential resistance mechanisms for NSCLC patients with CNS metastases.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zaiwen Fan
- Department of Medical Oncology, Air Force Medical Center, Chinese People's Liberation Army (PLA), Beijing, China
| | - Min Zhao
- Department of Oncology, Hebei Chest Hospital, Research Center of Hebei Lung Cancer Prevention and Treatment, Shijiazhuang, China
| | - Jing Kang
- Department of Oncology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xifang Wang
- Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Qun Hu
- Department of Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yongping Mu
- Department of Clinical Laboratory Center, The Affiliated People’s Hospital of Inner Mongolia Medical University, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Kai Wang
- Medical Center, Geneplus-Beijing, Beijing, China
| | | | | | - Wei Guo
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Jun Bai, ; Jun Zhao, ; Guilan Dong, ; Wei Guo,
| | - Guilan Dong
- Department of Medical Oncology, Tangshan People’s Hospital, Tangshan, China
- *Correspondence: Jun Bai, ; Jun Zhao, ; Guilan Dong, ; Wei Guo,
| | - Jun Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Jun Bai, ; Jun Zhao, ; Guilan Dong, ; Wei Guo,
| | - Jun Bai
- Department of Medical Oncology, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Jun Bai, ; Jun Zhao, ; Guilan Dong, ; Wei Guo,
| |
Collapse
|
4
|
Sato Y. Clinical utility of liquid biopsy-based companion diagnostics in the non-small-cell lung cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:630-642. [PMID: 36338524 PMCID: PMC9630093 DOI: 10.37349/etat.2022.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Recently, technological advances in the detection and biological characterization of circulating tumor DNA (ctDNA) have enabled the implementation of liquid biopsy testing into clinical practice. Methods for analysis of liquid biopsies have rapidly evolved over the past few years and have continued to advance, thus providing details about tumor biological characteristics such as tumor progression, metastasis, tumor heterogeneity, genomic mutation profile, clonal evolution, etc. In tandem with technological advances, the implementation of liquid biopsy in routine clinical settings has proceeded. In 2016, the Food and Drug Administration (FDA) approved the first ctDNA liquid biopsy test to detect epidermal growth factor receptor (EGFR) gene mutations in patients with non-small-cell lung cancer (NSCLC) as a companion diagnostic for molecular targeted drug of EGFR-tyrosine kinase inhibitor (TKI, EGFR-TKI). More recently, multigene panel assays of liquid biopsy have been approved as companion diagnostics and have been used in routine clinical settings. The estimation of blood tumor mutation burden (bTMB) to predict the efficacy of immune checkpoint inhibitor (ICI) treatment can be one of the promising approaches to liquid biopsy. The next stage of implementation of liquid biopsy for routine clinical settings is for monitoring of ctDNA after surgical treatment to predict prognosis and to detect disease relapse earlier than conventional imaging diagnosis. Its clinical utility is under assessment in several clinical trials. This review introduces recent advances in liquid biopsy methodology, the development of biomarkers, and its clinical utility in the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yoshiharu Sato
- DNA Chip Research Inc., Tokyo 105-0022, Japan,Correspondence: Yoshiharu Sato, DNA Chip Research Inc., 1-15-1 Kaigan, Minato-ku, Tokyo 105-0022, Japan.
| |
Collapse
|
5
|
Tan J, Hu C, Deng P, Wan R, Cao L, Li M, Yang H, Gu Q, An J, Jiang J. The Predictive Values of Advanced Non-Small Cell Lung Cancer Patients Harboring Uncommon EGFR Mutations-The Mutation Patterns, Use of Different Generations of EGFR-TKIs, and Concurrent Genetic Alterations. Front Oncol 2021; 11:646577. [PMID: 34513661 PMCID: PMC8426345 DOI: 10.3389/fonc.2021.646577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction Epidermal growth factor receptor (EGFR) 19del and L858R mutation are known as “common mutations” in non-small cell lung cancer (NSCLC) and predict sensitivities to EGFR tyrosine kinase inhibitors (TKIs), whereas 20ins and T790M mutations confer drug-resistance to EGFR-TKIs. The role of the remaining uncommon EGFR mutations remains elusive. Methods We retrospectively screened a group of NSCLC patients with uncommon EGFR mutations other than 20ins and T790M. The mutation patterns, use of different generations of EGFR-TKIs, and concurrent genetic alterations were analyzed. Meanwhile, a cohort of patients with single 19del or L858R were included for comparison. Results A total of 180/1,300 (13.8%) patients were identified. There were 102 patients with advanced or recurrent NSCLC that received first-line therapy of gefitinib/erlotinib/icotinib and afatinib and were eligible for analysis. The therapeutic outcomes among patients with common mutations (EGFRcm, n = 97), uncommon mutation plus common mutations (EGFRum+EGFRcm, n = 52), complex uncommon mutations (complex EGFRum, n = 22), and single uncommon mutations (single EGFRum, n = 28) were significantly different (ORRs: 76.3%, 61.5%, 54.5%, and 50.0%, respectively, p = 0.023; and mPFS: 13.3, 14.7, 8.1, and 6.0 months, respectively, p = 0.004). Afatinib showed superior efficacy over gefitinib/erlotinib/icotinib in EGFRcm (ORR: 81.0% vs. 75.0%, p = 0.773; mPFS: 19.1 vs. 12.0m, p = 0.036), EGFRum+EGFRcm (ORR: 100% vs. 54.5%, p = 0.017; mPFS: NE vs. 13.6m, p = 0.032), and single EGFRum (ORR: 78.6% vs. 21.4%, p = 0.007; mPFS: 10.1 vs. 3.0m, p = 0.025) groups. Comprehensive genomic profiling by Next Generation Sequencing encompassing multiple cancer-related genes was performed on 51/102 patients; the mPFS of patients without co-mutation (n = 16) and with co-mutations of tumor-suppressor genes (n = 31) and driver oncogenes (n = 4) were 31.1, 9.2, and 12.4 months, respectively (p = 0.046). TP53 mutation was the most common co-alteration and showed significantly shorter mPFS than TP53 wild-type patients (7.0 vs. 31.1m, p < 0.001). Multivariate analysis revealed that concurrent 19del/L858R and tumor-suppressor gene alterations independently predicted better and worse prognosis in patients with uncommon mutations, respectively. Conclusions Uncommon EGFR mutations constitute a highly heterogeneous subgroup of NSCLC that confer different sensitivities to EGFR-TKIs with regard to the mutation patterns. Afatinib may be a better choice for most uncommon EGFR mutations. Concurrent 19del/L858R and tumor-suppressor gene alterations, especially TP53, can be established as prognostic biomarkers.
Collapse
Affiliation(s)
- Jiarong Tan
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Pengbo Deng
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Cao
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Huaping Yang
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Qihua Gu
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Jian An
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Juan Jiang
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|