1
|
Zhang Z, Mao C, Wu Y, Wang Y, Cong H. Application of non‑coding RNAs in tumors (Review). Mol Med Rep 2025; 31:164. [PMID: 40211701 PMCID: PMC12015154 DOI: 10.3892/mmr.2025.13529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 04/25/2025] Open
Abstract
Tumors are associated with the highest mortality rates worldwide. For more than a decade, research has focused on the genetic involvement of proteins in cancer; however, a complete class of molecular non‑coding (nc)RNAs have been discovered in recent years, and these are considered to be associated with cancer. Notably, ncRNAs are highly conserved and multifunctional. These interact with multiple signaling pathways, influencing cell cycle progression and various physiological processes. Therefore, the present review aimed to investigate ncRNA, microRNA, transfer RNA‑derived small RNA, PIWI‑interacting RNA and long non‑coding RNA to further understand the associated generation processes, functional mechanisms and therapeutic roles in tumors. The present review demonstrated the critical role of ncRNAs in tumors, and may provide a novel theoretical basis for the role of ncRNAs as biomarkers or therapeutic tools in the treatment of cancer.
Collapse
Affiliation(s)
- Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
2
|
Hu H, Wu Y, Yuan S, Li H, Xiao S, Liu J, Li Y, Xie X, Gong Z, Zhong S, Xu H. Identification of a novel tRNA-derived small RNA fragment, tRF-16-2YU04DE, with the potential of inhibiting endometrial cancer progression. Med Oncol 2025; 42:173. [PMID: 40261523 DOI: 10.1007/s12032-025-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
As the second most prevalent gynecological malignancy, the incidence and mortality of endometrial cancer (EC) are rising. Transfer RNA-derived small RNAs (tsRNAs), a novel class of non-coding RNAs, are frequently dysregulated in multiple cancers. Nevertheless, its precise roles in EC remain to be elucidated. High-throughput sequencing technology was employed to characterize the expression profiles of tsRNAs in EC and healthy controls (HCs) tissues, followed by differential expression analyses. Quantitative real-time polymerase chain reaction (RT-qPCR) was applied to identify the target tsRNA for further biological functions experiments. Bioinformatics followed with RT-qPCR and Western blot systematically explore potential target genes and delineated the underlying molecular mechanisms. Eventually, a total of 284 tsRNAs were identified in both EC and HC tissues with 26 upregulated and 47 downregulated significantly. tRF-16-2YU04DE was finally identified as the target molecule. Functional experiments revealed that the overexpression of tRF-16-2YU04DE not only inhibited the proliferation, migration, and invasion of EC cells, but also promoted apoptosis and disrupted cell cycle progression. Although the downregulation of tRF-16-2YU04DE significantly promotes the proliferation, migration, and invasion of EC cells, it does not have a notable effect on cell apoptosis or the cell cycle. Bioinformatics analyses combined with RT-qPCR and Western blot results showed KLF5 expression was particularly downregulated by the overexpression of tRF-16-2YU04DE. tRF-16-2YU04DE-inhibiting EC progression in vitro may serve as a promising therapeutic target. The underlying mechanism is likely linked to its RNA silencing function, specifically targeting the 3' untranslated region (3' -UTR) of KLF5 mRNA.
Collapse
Affiliation(s)
- Huanhuan Hu
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Yinan Wu
- Department of Pathology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shenglong Yuan
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Huixin Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Shuyue Xiao
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Jianyao Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Yue Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Xinyi Xie
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China
| | - Zhen Gong
- Department of Gynecology, Women's Hospital of Nanjing Medical University & Nanjing Women and Children's Healthcare Hospital, 123 Tianfeixiang, Nanjing, 210004, China.
| | - Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baiziting 42, Nanjing, 210009, China.
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| |
Collapse
|
3
|
Wu L, Chen X, Chen D, Chen Q, Wu F. A novel tRNA-Derived Fragment, tRF-20-M0NK5Y93 inhibits the malignant progression of non-small cell lung cancer by mediating PLOD1. Arch Biochem Biophys 2025:110431. [PMID: 40262693 DOI: 10.1016/j.abb.2025.110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) constitutes a common malignant tumor characterized by substantial mortality rates. Transfer RNA (tRNA)-derived small RNAs (tsRNAs) have been implicated in the progression of various cancers, including NSCLC. However, to date, only a limited number of tsRNAs have been reported to be involved in the development of NSCLC. Hence, the present study aimed to investigate the potential roles of tsRNAs in the progression of NSCLC. MATERIALS AND METHODS A total of forty-six patients with NSCLC who underwent surgical resection were enrolled in this study. The expression patterns of tRNA-derived fragments (tRFs) in tumor and normal tissues of 6 NSCLC cases were investigated using RNA-sequencing assay. Cell viability, proliferation capacity, and migratory ability were measured utilizing the CCK-8, colony formation, and Transwell assays, respectively. Furthermore, cell apoptosis was evaluated by applying flow cytometry. The xenograft tumor model was constructed to observe tumor growth. The relationship between tRF-20-M0NK5Y93 and PLOD1 was clarified using the luciferase and RIP assays. RESULTS The RNA-sequencing assay revealed a significant decrease in the expression of tRF-20-M0NK5Y93 in tumor tissues. In line with this finding, qRT-PCR analysis further confirmed a meaningful downregulation of tRF-20-M0NK5Y93 in 46 patient samples with NSCLC. Importantly, this downregulated expression was strongly correlated with reduced patient survival. Additionally, overexpression of tRF-20-M0NK5Y93 was found to inhibit the proliferation and migration capabilities of NSCLC cells, leading to suppressed tumor growth and accelerated apoptosis. Furthermore, tRF-20-M0NK5Y93 was capable of binding to PLOD1, thereby negatively regulating its expression. Notably, the restoration of PLOD1 expression was able to counteract the inhibitory effects of enforced tRF-20-M0NK5Y93 on NSCLC cell proliferation, migration, and apoptosis. CONCLUSION The expression level of tRF-20-M0NK5Y93 was found to be decreased in NSCLC. Overexpressed tRF-20-M0NK5Y93 exhibited inhibitory effects on NSCLC cell proliferation and migration, accelerated apoptosis, and suppressed tumor growth by targeting PLOD1. These findings highlight tRF-20-M0NK5Y93 as a promising target for NSCLC therapy.
Collapse
Affiliation(s)
- Lixin Wu
- Department of Respiratory Medicine, Zhejiang Rongjun Hospital (The Third Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, China
| | - Xiaojie Chen
- Department of Respiratory Medicine, Zhejiang Rongjun Hospital (The Third Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, China
| | - Dong Chen
- Department of Pathology, Zhejiang Rongjun Hospital (The Third Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, China
| | - Qin Chen
- Department of Respiratory Medicine, Zhejiang Rongjun Hospital (The Third Affiliated Hospital of Jiaxing University), Jiaxing, 314000, Zhejiang, China.
| | - Fengjie Wu
- Department of Respiratory Medicine, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
4
|
Dong H, Ye C, Ye X, Yan J, Ye G, Shao Y. The biological role and molecular mechanism of transfer RNA-derived small RNAs in tumor metastasis. Front Oncol 2025; 15:1560943. [PMID: 40265011 PMCID: PMC12011605 DOI: 10.3389/fonc.2025.1560943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Tumor metastasis is a significant contributor to increased cancer mortality. Transfer RNA-derived small RNAs (tsRNAs), a class of endogenous non-coding RNA molecules, play crucial functional roles in various physiological processes, including the regulation of transcription and reverse transcription, the modulation of translation processes, the modification of epigenetic inheritance, the regulation of the cell cycle, etc. Dysregulated tsRNAs are closely related to the occurrence and progression of human malignancies. Accumulating evidence indicates that the abnormal expression of tsRNAs is associated with tumor metastasis through a variety of mechanisms. Hence, we summarize the fundamental structure and biological functions of tsRNAs, with a focus on how tsRNAs influence the tumor metastasis process through downstream targets or the regulation of interactions between upstream and downstream molecules, thereby providing a novel perspective for targeted therapy for tumor metastasis.
Collapse
Affiliation(s)
- Haotian Dong
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Chengyuan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Xiaohan Ye
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongfu Shao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Guo J, Chen X, Ren J, Wang Y, Wang K, Yang S. The Role of tRNA-Derived Small RNAs (tsRNAs) in Regulating Cell Death of Cardiovascular Diseases. BIOLOGY 2025; 14:218. [PMID: 40001986 PMCID: PMC11853139 DOI: 10.3390/biology14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Transfer RNA is a class of non-coding RNA that plays a role in amino acid translocation during protein synthesis. After specific modification, the cleaved fragment is called tRNA-derived small RNA. The advancement of bioinformatics technology has led to an increase in the visibility of small RNA derived from tRNA, and their functions in biological processes are being revealed. These include gene silencing, transcription and translation, epigenetics, and cell death. These properties have led to the implication of tsRNAs in various diseases. Although the current research mainly focuses on the role of tRNA-derived small RNA in cancer, there is mounting evidence that they are also strongly associated with cardiovascular disease, including cardiac hypertrophy, atrial fibrillation, heart failure, and myocarditis. Therefore, the regulatory role of tRNA-derived small RNA in cardiovascular disease will become an emerging therapeutic strategy. This review succinctly summarizes the characteristics, classification, and regulatory effect of tsRNA. By exploring the mechanism of tsRNA, it will provide a new tool for the diagnosis and prognosis of cardiovascular disease.
Collapse
Affiliation(s)
- Jiaxu Guo
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Jiahao Ren
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Yunhong Wang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China;
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| | - Sumin Yang
- Department of Cardiovascular Surgery, Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; (J.G.); (X.C.); (J.R.)
| |
Collapse
|
6
|
Liu X, Zhang J, Liang Y, Chen X, Xu S, Lin S, Dai Y, Chen X, Zhou Y, Bai Y, Chen C. tiRNA-Gly-GCC-002 promotes epithelial-mesenchymal transition and fibrosis in lupus nephritis via FKBP5-mediated activation of Smad. Br J Pharmacol 2025; 182:616-632. [PMID: 39419630 DOI: 10.1111/bph.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Renal interstitial fibrosis is a frequent pathological manifestation of lupus nephritis (LN). tRNA halves (tiRNAs) are acquired from tRNA-derived small non-coding RNAs (sncRNAs) and are associated with fibrosis. Our previous study indicated enhanced tiRNA-Gly-GCC-002 (tiRNA002) levels in kidneys were positively related to LN-related fibrosis. However, the precise molecular mechanism remains unclear. EXPERIMENTAL APPROACH The mimic and agomiR of tiRNA002 were introduced into tubular epithelial cells (TECs) and MRL/lpr mice by transfection. The levels of gene and protein expressions were quantified using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and immunofluorescence assays. KEY RESULTS In TECs treated with LN serum, as well as in the kidneys of MRL/lpr mice, high levels of tiRNA002 directly influenced the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Furthermore, tiRNA002 overexpression promoted EMT in TECs and accelerated renal interstitial fibrosis in MRL/lpr mice via Smad signalling. The target gene of tiRNA002, FKBP prolyl isomerase 5 (FKBP5), improved Smad signalling by interacting with phosphorylated Smad2/3. Silencing FKBP5 alleviated LN serum- or tiRNA002-mimic-induced EMT in TECs. In addition, FKBP5 overexpression reversed the tiRNA002 knockdown-mediated reduction of EMT and ECM accumulation. CONCLUSIONS AND IMPLICATIONS These findings indicated that tiRNA002 is markedly increased in LN, which facilitates renal fibrosis by promoting EMT via FKBP5-mediated Smad signalling. Therefore, targeting tiRNA002 may be an innovative approach to treat renal interstitial fibrosis in LN.
Collapse
Affiliation(s)
- Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Shungang Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Sishi Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yuanting Dai
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Uzelac M, Ongkeko WM. Assessing the diagnostic utility of tRNA-derived fragments as biomarkers of head and neck cancer. Transl Oncol 2024; 50:102135. [PMID: 39317063 PMCID: PMC11462370 DOI: 10.1016/j.tranon.2024.102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
Roughly 54,000 individuals are diagnosed with head and neck cancers in the United States yearly. Transfer RNA-derived fragments (tRF) are the products of enzymatic cleavage of precursor tRNAs, and have been proposed for use as biomarkers of head and neck cancer. In this study, we aim to further analyze the utility that tRFs might provide as biomarkers of head and neck cancer. tRF read counts were obtained for 453 tumor and 44 adjacent normal tissue samples and used to construct a gradient boosting diagnostic model. Although we identified 129 tRFs that were significantly dysregulated between these samples, the model achieved a sensitivity of only 69 % and a specificity of 59 %. tRFs are thought to induce the degradation of mRNA transcripts containing a complementary "seed" region. Despite the above performances, we chose to explore this concept of translational regulation by analyzing these tRFs for inverse correlation to the expression of select oncogenes and tumor suppressor genes implicated in head and neck cancer. Among others, CysGCA 5'-half and LysCTT 3'-tRF were upregulated in the tumor samples, and corresponded to decreased expression of PIK3R1, AKT1, and CPEB3. These transcripts were further found to contain numerous significantly complementary sites at which tRF-mediated mRNA degradation might occur. Although these tRFs did appear to correlate to many of the oncogenic metrics analyzed, we believe that additional research is needed before they might be used to improve the diagnosis, treatment, and survival of patients with this disease.
Collapse
Affiliation(s)
- Matthew Uzelac
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States; Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Weg M Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA 92093, United States; Research Service, VA San Diego Healthcare System, San Diego, CA 92161, United States.
| |
Collapse
|
8
|
Gong L, Hu Y, Pan L, Cheng Y. tRNA-derived small RNAs (tsRNAs): establishing their dominance in the regulation of human cancer. Front Genet 2024; 15:1466213. [PMID: 39659673 PMCID: PMC11628509 DOI: 10.3389/fgene.2024.1466213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
The main function of transfer RNAs (tRNAs) is to carry amino acids into the ribosome and synthesize proteins under the guidance of messenger RNAs (mRNAs). In addition to this, it has been observed that tRNAs undergo precise cleavage at specific loci, giving rise to an extensive array of distinct small RNAs, termed tRNA-derived small RNAs (tsRNAs). Existing studies have shown that tsRNAs are widely present across various organisms and comprehensively regulate gene expression, aberrant expression of tsRNAs is inextricably linked to tumorigenesis and development, thus, a systematic understanding of tsRNAs is necessary. This review aims to comprehensively delineate the genesis and expression patterns of tsRNAs, elucidate their diverse functions and emphasize their prospective clinical application as biomarkers and targets for therapy. It is noteworthy that we innovatively address the roles played by tsRNAs in human cancers at the level of the hallmarks of tumorigenesis proposed by Hanahan in anticipation of a broad understanding of tsRNAs and to guide the treatment of tumors.
Collapse
Affiliation(s)
- Li Gong
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Yajie Hu
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Ling Pan
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Lu J, Zhu P, Zhang X, Zeng L, Xu B, Zhou P. tRNA-derived fragments: Unveiling new roles and molecular mechanisms in cancer progression. Int J Cancer 2024; 155:1347-1360. [PMID: 38867475 DOI: 10.1002/ijc.35041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
tRNA-derived fragments (tRFs) are novel small noncoding RNAs (sncRNAs) that range from approximately 14 to 50 nt. They are generated by the cleavage of mature tRNAs or precursor tRNAs (pre-tRNAs) at specific sites. Based on their origin and length, tRFs can be classified into three categories: (1) tRF-1 s; (2) tRF-3 s, tRF-5 s, and internal tRFs (i-tRFs); and (3) tRNA halves. They play important roles in stress response, signal transduction, and gene expression processes. Recent studies have identified differential expression of tRFs in various tumors. Aberrantly expressed tRFs have critical clinical value and show promise as new biomarkers for tumor diagnosis and prognosis and as therapeutic targets. tRFs regulate the malignant progression of tumors via various mechanisms, primarily including modulation of noncoding RNA biogenesis, global chromatin organization, gene expression regulation, modulation of protein translation, regulation of epigenetic modification, and alternative splicing regulation. In conclusion, tRF-mediated regulatory pathways could present new avenues for tumor treatment, and tRFs could serve as promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Jingjing Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Ping Zhu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiufen Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Oncology Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Linzi Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bujie Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ping Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Mao C, Yuan W, Fang R, Wu Y, Zhang Z, Cong H. Transfer RNA‑derived small RNAs: A class of potential biomarkers in multiple cancers (Review). Oncol Lett 2024; 28:293. [PMID: 38737976 PMCID: PMC11082847 DOI: 10.3892/ol.2024.14427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
Transfer (t)RNA-derived small RNAs (tsRNAs) are a class of novel non-coding small RNAs that are created via precise cleavage of tRNAs or tRNA precursors by different enzymes. tsRNAs are specific biological molecules that serve essential roles in cell proliferation, apoptosis, transcriptional regulation, post-transcriptional modification and translational regulation. Additionally, tsRNAs participate in the pathogenesis of several diseases, particularly in the development of malignant tumors. At present, the process of discovering and understanding the functions of tsRNAs is still in its early stages. The present review introduces the known biological functions and mechanisms of tsRNAs, and discusses the tsRNAs progression in several types of cancers as well as the possibility of tsRNAs becoming novel tumor biomarkers. Furthermore, tsRNAs may promote and hinder tumor formation according to different mechanisms and act as oncogenic or oncostatic molecules. Therefore, tsRNAs may be future potential tumor biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Chunyan Mao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wentao Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ronghua Fang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yi Wu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhihan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
- Department of Blood Transfusion, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
11
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
12
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Li Y, Qin J, Chen G, Wu W, Sun X. Plasma THBS1 as a predictive biomarker for poor prognosis and brain metastasis in patients with HER2-enriched breast cancer. Int J Clin Oncol 2024; 29:427-441. [PMID: 38411882 DOI: 10.1007/s10147-024-02472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Thrombospondin-1 (THBS1) is a secretory adhesive glycoprotein involved in the progression of multiple malignancies, including breast cancer. However, the clinical significance and prognostic role of plasma THBS1 in breast cancer have yet to be clarified. METHODS Plasma THBS1 levels in 627 breast cancer patients were analyzed by enzyme-linked immunosorbent assay. Bone marrow blood was drawn from the anterior/posterior superior iliac spine to detect the presence of disseminated tumor cells (DTCs). The effects of plasma THBS1 on the clinicopathological characteristics and survival prediction of breast cancer patients were explored. RESULTS Plasma THBS1 did not correlate with overall survival, breast cancer-specific survival (BCSS), and distant disease-free survival (DDFS) in the entire breast cancer cohort. Notably, HER2-enriched patients with high-plasma THBS1 levels had significantly shorter BCSS (P = 0.027) and DDFS (P = 0.011) than those with low levels. Multivariate analyses revealed that plasma THBS1 was an independent prognostic marker of BCSS (P = 0.026) and DDFS (P = 0.007) in HER2-enriched patients. THBS1 levels were 24% higher in positive DTC patients than in negative DTC patients (P = 0.031), and high levels were significantly associated with poor BCSS in positive DTC patients (HR 2.08, 95% CI 1.17-3.71; P = 0.019). Moreover, high-plasma THBS1 levels were specifically associated with an increased occurrence of brain metastasis in HER2-enriched patients (P = 0.041). CONCLUSION These findings suggest that plasma THBS1 may be serving as an unfavorable prognosis predictor for HER2-enriched breast cancer and justifies the need for further research.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Jun Qin
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Guiming Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Weidong Wu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
14
|
Huang T, Zhao Y, Jiang G, Yang Z. tsRNA: A Promising Biomarker in Breast Cancer. J Cancer 2024; 15:2613-2626. [PMID: 38577588 PMCID: PMC10988313 DOI: 10.7150/jca.93531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
tRNA-derived small RNAs (tsRNAs) are a novel class of non-coding small RNAs, generated from specific cleavage sites of tRNA or pre-tRNA. tsRNAs can directly participate in RNA silencing, transcription, translation, and other processes. Their dysregulation is closely related to the occurrence and development of various cancers. Breast cancer is one of the most common and fastest-growing malignant tumors in humans. tsRNAs have been found to be dysregulated in breast cancer, serving as a new target for exploring the pathogenesis of breast cancer. They are also considered new tumor markers, providing a basis for diagnosis and treatment. This article reviews the generation, classification, mechanism of action, function of tsRNAs, and their biological effects and related mechanisms in breast cancer, in the hope of providing a new direction for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ting Huang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yuexin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guoqin Jiang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhixue Yang
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
15
|
Zhou X, Xia Q, Chen M, Zhang X, Huang M, Zheng X, Wang S, Wu B, Du Z. THBS1 promotes angiogenesis and accelerates ESCC malignant progression by the HIF-1/VEGF signaling pathway. Cell Biol Int 2024; 48:311-324. [PMID: 38233982 DOI: 10.1002/cbin.12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Previously, we demonstrated that the expression of THBS1 is increased in esophageal squamous cell carcinoma (ESCC) tissues and is correlated with lymph node metastasis and poor prognosis, indicating that THBS1 might be a candidate oncogene in ESCC. In this study, we future studied the specific role of THBS1 in ESCC and its molecular mechanism. Silencing THBS1 expression resulted in inhibition of cell migration and cell invasion of ESCC cells, the decrease of colony formation and proliferation. Tube formation of human umbilical vein endothelial cells (HUVECs) in vitro was decreased when cultured with conditioned medium from THBS1-silenced cells. The expression of CD31, a marker for blood vessel endothelial cells, was decreased in tumor tissues derived from THBS1-silenced tumors in vivo. Silencing THBS1 leaded the decreased of hypoxia-inducible factor-1α (HIF-1α), HIF-1β, and VEGFA protein. The expression of p-ERK and p-AKT were declined in HUVECs following incubation with conditioned medium from THBS1-silenced ESCC cells compared conditioned medium from control cells. Furthermore, the treatment with bevacizumab boosted the decrease of the p-ERK and p-AKT levels in HUVECs incubated with the conditioned medium from THBS1-silenced ESCC cells. THBS1 silencing combined with bevacizumab blocked VEGF, inhibited to the tube formation, colony formation and migration of HUVECs, which were superior to that of bevacizumab alone. We presumed that THBS1 can enhance HIF-1/VEGF signaling and subsequently induce angiogenesis by activating the AKT and ERK pathways in HUVECs, resulting in bevacizumab resistance. THBS1 would be a potential target in tumor antiangiogenesis therapies.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Qiaoxi Xia
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Mantong Chen
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaona Zhang
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Meihui Huang
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Xiaoqi Zheng
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zepeng Du
- Department of Central Laboratory, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Pathology, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
16
|
Zhang Y, Gu X, Li Y, Huang Y, Ju S. Multiple regulatory roles of the transfer RNA-derived small RNAs in cancers. Genes Dis 2024; 11:597-613. [PMID: 37692525 PMCID: PMC10491922 DOI: 10.1016/j.gendis.2023.02.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 09/12/2023] Open
Abstract
With the development of sequencing technology, transfer RNA (tRNA)-derived small RNAs (tsRNAs) have received extensive attention as a new type of small noncoding RNAs. Based on the differences in the cleavage sites of nucleases on tRNAs, tsRNAs can be divided into two categories, tRNA halves (tiRNAs) and tRNA-derived fragments (tRFs), each with specific subcellular localizations. Additionally, the biogenesis of tsRNAs is tissue-specific and can be regulated by tRNA modifications. In this review, we first elaborated on the classification and biogenesis of tsRNAs. After summarizing the latest mechanisms of tsRNAs, including transcriptional gene silencing, post-transcriptional gene silencing, nascent RNA silencing, translation regulation, rRNA regulation, and reverse transcription regulation, we explored the representative biological functions of tsRNAs in tumors. Furthermore, this review summarized the clinical value of tsRNAs in cancers, thus providing theoretical support for their potential as novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yang Li
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, Jiangsu 226001, China
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
17
|
Corbella E, Fara C, Covarelli F, Porreca V, Palmisano B, Mignogna G, Corsi A, Riminucci M, Maras B, Mancone C. THBS1 and THBS2 Enhance the In Vitro Proliferation, Adhesion, Migration and Invasion of Intrahepatic Cholangiocarcinoma Cells. Int J Mol Sci 2024; 25:1782. [PMID: 38339060 PMCID: PMC10855656 DOI: 10.3390/ijms25031782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
In intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes. rhTHBS2 was more intense in inducing invasiveness and in committing the HuCCT-1 cells to a mesenchymal-like phenotype and was therefore a stronger enhancer of the malignant behavior of iCCA cells compared to rhTHBS1. Our data extend the role of THBS1 and THBS2, which are not only able to hinder the vascular network and promote tumor-associated lymphangiogenesis but also exacerbate the malignant behavior of the iCCA cells.
Collapse
Affiliation(s)
- Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Claudia Fara
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Francesca Covarelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Biagio Palmisano
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Viale Regina Elena 332, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (E.C.); (C.F.); (F.C.); (V.P.); (A.C.); (M.R.)
| |
Collapse
|
18
|
Wu F, Yang Q, Pan W, Meng W, Ma Z, Wang W. tRNA-derived fragments: mechanism of gene regulation and clinical application in lung cancer. Cell Oncol (Dordr) 2024; 47:37-54. [PMID: 37642916 DOI: 10.1007/s13402-023-00864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Lung cancer, being the most widespread and lethal form of cancer globally, has a high incidence and mortality rate primarily attributed to challenges associated with early detection, extensive metastasis, and frequent recurrence. In the context of lung cancer development, noncoding RNA molecules have a crucial role in governing gene expression and protein synthesis. Specifically, tRNA-derived fragments (tRFs), a subset of noncoding RNAs, exert significant biological influences on cancer progression, encompassing transcription and translation processes as well as epigenetic regulation. This article primarily examines the mechanisms by which tRFs modulate gene expression and contribute to tumorigenesis in lung cancer. Furthermore, we provide a comprehensive overview of the current bioinformatics analysis of tRFs in lung cancer, with the objective of offering a systematic and efficient approach for studying the expression profiling, functional enrichment, and molecular mechanisms of tRFs in this disease. Finally, we discuss the clinical significance and potential avenues for future research on tRFs in lung cancer. This paper presents a comprehensive systematic review of the existing research findings on tRFs in lung cancer, aiming to offer improved biomarkers and drug targets for clinical management of lung cancer.
Collapse
Affiliation(s)
- Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Qianqian Yang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Pan
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Wei Meng
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai, 200444, China.
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital, Yunnan Cancer Center, Kunming, 650118, China.
| |
Collapse
|
19
|
Gao LJ, Zhu SX, Wei YY, Meng HW, Gu J, Zhang H, Dai LJ. Prognostic, diagnostic and clinicopathological roles of tsRNAs: a meta-analysis in breast cancer. Eur J Med Res 2024; 29:35. [PMID: 38185655 PMCID: PMC10773143 DOI: 10.1186/s40001-023-01617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/24/2023] [Indexed: 01/09/2024] Open
Abstract
Breast cancer (BC) is one of the most common malignancies in women and the leading cause of cancer-related death in women. The newly emerged non-coding RNAs tsRNAs (tRNA-derived small RNAs) play an important role in the occurrence and development of BC. The purpose of this study was to comprehensively evaluate the prognostic, diagnostic and clinicopathological roles of tsRNAs in BC. Through literature screening, a total of 13 BC-related tsRNA studies were included in this meta-analysis, all of which passed quality assessment. Prognostic studies showed upregulated tsRNAs to be associated with poor survival outcomes (HR = 1.64, 95%CI 1.51-1.77) and downregulated tsRNAs to be associated with better outcomes (HR = 0.58, 95%CI 0.50-0.68). Results of diagnostic studies showed a combined sensitivity of 72% (95%CI 68-76%) and combined specificity of 64% (95%CI 61-67%); the AUC was 0.72 (95%CI 0.68-0.75) and the DOR 4.62 (95%CI 3.76-5.68). Finally, correlation analysis of clinicopathological features showed that downregulation of tsRNAs correlated significantly with age, TNM stage and lymphatic metastasis. Sensitivity analysis and publication bias showed no significant difference. In conclusion, BC-associated tsRNAs are closely related to the prognosis and clinicopathological features of patients with this disease and can be used to assist in early diagnosis of BC. Therefore, tsRNAs are potential targets for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Lu-Jue Gao
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Xun Zhu
- Jiangyin Traditional Chinese Medicine Hospital, Jiangyin, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying-Yi Wei
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Wei Meng
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Gu
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Zhang
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Li-Juan Dai
- Taicang Hospital of Traditional Chinese Medicine, Suzhou, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
20
|
Wang L, Peng B, Yan Y, Liu G, Yang D, Wang Q, Li Y, Mao Q, Chen Q. The tRF-3024b hijacks miR-192-5p to increase BCL-2-mediated resistance to cytotoxic T lymphocytes in Esophageal Squamous Cell Carcinoma. Int Immunopharmacol 2024; 126:111135. [PMID: 37977065 DOI: 10.1016/j.intimp.2023.111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
The limited efficacy of immune checkpoint inhibitors (ICIs) in the treatment of advanced Esophageal Squamous Cell Carcinoma (ESCC) poses a challenge. Recent evidence suggests that tumor cells' insensitivity to cytotoxic T lymphocytes (CTLs) contributes to drug resistance against ICIs. Here, a particular tRNA-derived fragment called tRF-3024b has been identified as playing a significant role in tumor cell resistance to CTLs. Through tRF sequencing (tRF-seq), we observed a high expression of tRF-3024b in ESCC cells that survived co-culture with CTLs. Further in vitro studies demonstrated that tRF-3024b reduced the apoptosis of tumor cells when co-cultured with CTLs. The mechanism behind this resistance involves tRF-3024b promoting the expression of B-cell lymphoma-2 (BCL-2) by sequestering miR-192-5p, a microRNA that would normally inhibit BCL-2 expression. This means that tRF-3024b indirectly enhances the protective effects of BCL-2, reducing apoptosis in tumor cells. Rescue assays confirmed that the suppressive function of tRF-3024b relies on BCL-2. In summary, the tRF-3024b/miR-192-5p/BCL-2 axis sheds light on the crucial role of tRF-3024b in regulating BCL-2 expression. These findings offer valuable insights into strategies to enhance the response of ESCC to CTLs and improve the effectiveness of immunotherapy approaches in treating ESCC.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oncology, Department of Geriatric Lung Cancer Laboratory, The Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Bo Peng
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Yan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guangjun Liu
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dunpeng Yang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qibin Wang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongcheng Li
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Qixing Mao
- Department of Thoracic Surgery, Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Qiang Chen
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
21
|
Huang T, Chen C, Du J, Zheng Z, Ye S, Fang S, Liu K. A tRF-5a fragment that regulates radiation resistance of colorectal cancer cells by targeting MKNK1. J Cell Mol Med 2023; 27:4021-4033. [PMID: 37864471 PMCID: PMC10747413 DOI: 10.1111/jcmm.17982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023] Open
Abstract
Radiotherapy serves as a crucial strategy in the treatment of colorectal cancer (CRC). However, its efficacy is often hindered by the challenge of radiation resistance. Although the literature suggests that some tRNA-derived small RNAs (tsRNAs) are associated with various cancers, studies reporting the relationship of tsRNAs with cancer cell radiosensitivity have not been published yet. In our study, we utilized tsRNAs sequencing to predict differentially expressed tsRNAs in two CRC cells and their radioresistant cells, and 10 tsRNAs with significant differences in expression were validated by qPCR. The target genes of tRF-16-7X9PN5D were predicted and verified by the bioinformatics, dual-luciferase reporter gene assay and western blotting analyses. Wound healing, colony formation, transwell invasion and CCK-8 assays were performed to detect the effects of tRF-16-7X9PN5D on cell function and radiosensitivity. Western blotting evaluated the relationship between tRF-16-7X9PN5D and the MKNK-eIF4E axis. Our findings demonstrated that tRF-16-7X9PN5D expression was substantially downregulated in radioresistant CRC cells. Furthermore, tRF-16-7X9PN5D could promote CRC cells' ability to proliferate, migrate, invade and obtain radiation resistance by targeting MKNK1. Finally, tRF-16-7X9PN5D could regulate eIF4E phosphorylation via MKNK1. This investigation indicated that tRF-16-7X9PN5D has an essential regulatory role in the radiation resistance of CRC by directly targeting MKNK1, and may be a new pathway for regulating the CRC radiosensitivity.
Collapse
Affiliation(s)
- Tianyi Huang
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Chujia Chen
- Health Science CenterNingbo UniversityNingboZhejiangChina
| | - Juan Du
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Zhen Zheng
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuang Ye
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| | - Shuai Fang
- Department of Thoracic SurgeryThe Affiliated Hospital of Medical School of Ningbo UniversityNingboZhejiangChina
| | - Kaitai Liu
- Department of Radiation OncologyThe Affiliated Lihuili Hospital of Ningbo UniversityNingboZhejiangChina
| |
Collapse
|
22
|
Shi H, Xie J, Pei S, He D, Hou H, Xu S, Fu Z, Shi X. Digging out the biology properties of tRNA-derived small RNA from black hole. Front Genet 2023; 14:1232325. [PMID: 37953919 PMCID: PMC10637384 DOI: 10.3389/fgene.2023.1232325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
An unique subclass of functional non-coding RNAs generated by transfer RNA (tRNA) under stress circumstances is known as tRNA-derived small RNA (tsRNA). tsRNAs can be divided into tRNA halves and tRNA-derived fragments (tRFs) based on the different cleavage sites. Like microRNAs, tsRNAs can attach to Argonaute (AGO) proteins to target downstream mRNA in a base pairing manner, which plays a role in rRNA processing, gene silencing, protein expression and viral infection. Notably, tsRNAs can also directly bind to protein and exhibit functions in transcription, protein modification, gene expression, protein stabilization, and signaling pathways. tsRNAs can control the expression of tumor suppressor genes and participate in the initiation of cancer. It can also mediate the progression of diseases by regulating cell viability, migration ability, inflammatory factor content and autophagy ability. Precision medicine targeting tsRNAs and drug therapy of plant-derived tsRNAs are expected to be used in clinical practice. In addition, liquid biopsy technology based on tsRNAs indicates a new direction for the non-invasive diagnosis of diseases.
Collapse
Affiliation(s)
- Hengmei Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Jiaheng Xie
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danni He
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Huyang Hou
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shipeng Xu
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoyan Shi
- Department of Obstetrics and Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Ni Y, Wu A, Li J, Zhang W, Wang Y. Evaluation of the serum tRNA-derived fragment tRF-5022B as a potential biomarker for the diagnosis of osteoarthritis. J Orthop Surg Res 2023; 18:800. [PMID: 37880787 PMCID: PMC10601305 DOI: 10.1186/s13018-023-04273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease. It is common in middle-aged and elderly people and is one of the main causes of disability. Currently, the etiology of OA is unclear, and no specific biomarkers for the diagnosis of OA have been identified. Therefore, finding a highly sensitive biomarker is essential for a proper diagnosis.TRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs) are newly discovered classes of noncoding RNAs. tRF has been proven in several studies to have significant associations with tumor diagnosis, making it a promising biomarker in cancer research. However, the diagnostic utility of tRF in OA patients and the correlation between OA progression and trf differential expression have yet to be elaborated. The purpose of this research was to identify tRFs with differential expression in OA to assess their potential as OA biomarkers. To determine the tRF-5022B expression level in this research, real-time fluorescence quantitative PCR has been employed. Agarose gel electrophoresis, Sanger sequencing, and other investigations have been employed for evaluating tRF-5022B's molecular properties. Receiver operating characteristic curve analysis has been utilized for assessing the diagnostic effectiveness of the tRF-5022B. The findings demonstrated that tRF-5022B expression was considerably lower in OA serum. The Kellgren-Lawrence grading scale was shown to correspond with serum expression levels. The ROC curve confirmed that tRF-5022B serum expression levels might differentiate OA cases from healthy individuals and RA patients. According to the aforementioned findings, tRF-5022B may be employed as a novel biomarker for OA diagnosis due to its excellent diagnostic value.
Collapse
Affiliation(s)
- Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Anqi Wu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Jianxin Li
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
24
|
Cao W, Zeng Z, Lei S. 5'-tRF-19-Q1Q89PJZ Suppresses the Proliferation and Metastasis of Pancreatic Cancer Cells via Regulating Hexokinase 1-Mediated Glycolysis. Biomolecules 2023; 13:1513. [PMID: 37892195 PMCID: PMC10605356 DOI: 10.3390/biom13101513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
tRNA-derived small RNAs (tDRs) are dysregulated in several diseases, including pancreatic cancer (PC). However, only a limited number of tDRs involved in PC progression are known. Herein, a novel tDR, 5'-tRF-19-Q1Q89PJZ (tRF-19-Q1Q89PJZ), was verified in PC plasma using RNA and Sanger sequencing. tRF-19-Q1Q89PJZ was downregulated in PC tissues and plasma, which was related to advanced clinical characteristics and poor prognosis. tRF-19-Q1Q89PJZ overexpression inhibited the malignant activity of PC cells in vitro, while tRF-19-Q1Q89PJZ inhibition produced an opposite effect. The differentially expressed genes induced by tRF-19-Q1Q89PJZ overexpression were enriched in "pathways in cancer" and "glycolysis". Mechanistically, tRF-19-Q1Q89PJZ directly sponged hexokinase 1 (HK1) mRNA and inhibited its expression, thereby suppressing glycolysis in PC cells. HK1 restoration relieved the inhibitory effect of tRF-19-Q1Q89PJZ on glycolysis in PC cells and on their proliferation and mobility in vitro. tRF-19-Q1Q89PJZ upregulation inhibited PC cell proliferation and metastasis in vivo and suppressed HK1 expression in tumor tissues. Furthermore, tRF-19-Q1Q89PJZ expression was attenuated under hypoxia. Collectively, these findings indicate that tRF-19-Q1Q89PJZ suppresses the malignant activity of PC cells by regulating HK1-mediated glycolysis. Thus, tRF-19-Q1Q89PJZ may serve as a key target for PC therapy.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China;
| |
Collapse
|
25
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
26
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
27
|
Pekarsky Y, Balatti V, Croce CM. tRNA-derived fragments (tRFs) in cancer. J Cell Commun Signal 2023; 17:47-54. [PMID: 36036848 PMCID: PMC10030754 DOI: 10.1007/s12079-022-00690-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022] Open
Abstract
tRNA fragments (tRNA derived fragments or tRFs) are small single stranded RNA molecules derived from pre-tRNAs and mature tRNAs. tRFs have been known for a number of years, but previously they were believed to be not important products of tRNA degradation. tRFs can be unique, like tRF-1 s, or redundant, like tRF-3 s and tRF-5 s. Scientific interest in tRFs has drastically increased in the last 5 years. Many studies have found that tRFs are differentially expressed in many normal cellular processes as well as in transformed cancer cells. Dysregulation of tRFs expression have been reported in multiple major types of cancer including solid cancers and lymphoid malignancies. However the exact molecular role of these molecules is not entirely clear. A number of studies proposed that tRFs can work as microRNAs by targeting gene expression. Here we discuss recent studies showing differential expression of tRFs in many cancers as well as what is currently known about tRFs biological functions in cancer cells.
Collapse
Affiliation(s)
- Yuri Pekarsky
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| | - Veronica Balatti
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, Biomedical Research Tower, Room 1082, 460 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
28
|
Fu M, Gu J, Wang M, Zhang J, Chen Y, Jiang P, Zhu T, Zhang X. Emerging roles of tRNA-derived fragments in cancer. Mol Cancer 2023; 22:30. [PMID: 36782290 PMCID: PMC9926655 DOI: 10.1186/s12943-023-01739-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
tRNA-derived fragments (tRFs) are an emerging category of small non-coding RNAs that are generated from cleavage of mature tRNAs or tRNA precursors. The advance in high-throughput sequencing has contributed to the identification of increasing number of tRFs with critical functions in distinct physiological and pathophysiological processes. tRFs can regulate cell viability, differentiation, and homeostasis through multiple mechanisms and are thus considered as critical regulators of human diseases including cancer. In addition, increasing evidence suggest the extracellular tRFs may be utilized as promising diagnostic and prognostic biomarkers for cancer liquid biopsy. In this review, we focus on the biogenesis, classification and modification of tRFs, and summarize the multifaceted functions of tRFs with an emphasis on the current research status and perspectives of tRFs in cancer.
Collapse
Affiliation(s)
- Min Fu
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China ,grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jianmei Gu
- grid.260483.b0000 0000 9530 8833Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226361 Jiangsu China
| | - Maoye Wang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Jiahui Zhang
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yanke Chen
- grid.440785.a0000 0001 0743 511XJiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Pengcheng Jiang
- grid.452247.2Institute of Digestive Diseases, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, 212002 Jiangsu China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Xu Zhang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China. .,Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
29
|
Zhang S, Xie Y, Yu X, Ge J, Ye G, Guo J. Absolute quantification of a plasma tRNA-derived fragment for the diagnosis and prognosis of gastric cancer. Front Oncol 2023; 13:1106997. [PMID: 37139153 PMCID: PMC10151007 DOI: 10.3389/fonc.2023.1106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background The transition from a healthy gastric mucosa to gastric cancer is a multi-step process. Early screening can significantly improve the survival rate of gastric cancer patients. A reliable liquid biopsy for gastric cancer prediction is urgently needed and since tRNA-derived fragments (tRFs) are abundant in various body fluids, tRFs are possible new biomarkers for gastric cancer. Methods A total of 438 plasma samples from patients with different gastric mucosal lesions as well as healthy individuals were collected. A specific reverse transcription primer, a forward primer, a reverse primer, and a TaqMan probe were designed. A standard curve was constructed and an absolute quantitation method was devised for detection of tRF-33-P4R8YP9LON4VDP in plasma samples of individuals with differing gastric mucosa lesions. Receiver operating characteristic curves were constructed to evaluate the diagnostic values of tRF-33-P4R8YP9LON4VDP for individual with differing gastric mucosa. A Kaplan-Meier curve was established to calculate the prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Finally, a multivariate Cox regression analysis was performed to assess the independent prognostic value of tRF-33-P4R8YP9LON4VDP for advanced gastric cancer patients. Results A detection method for plasma tRF-33-P4R8YP9LON4VDP was successfully established. Levels of plasma tRF-33-P4R8YP9LON4VDP were shown to reflect a gradient change from healthy individuals to gastritis patients to early and advanced gastric cancer patients. Significant differences were found among individuals with differing gastric mucosa, with reduced levels of tRF-33-P4R8YP9LON4VDP significantly related to a poor prognosis. tRF-33-P4R8YP9LON4VDP was found to be an independent predictor of an unfavorable survival outcome. Conclusions In this study, we developed a quantitative detection method for plasma tRF-33-P4R8YP9LON4VDP that exhibited hypersensitivity, convenience, and specificity. Detection of tRF-33-P4R8YP9LON4VDP was found to be a valuable means by which to monitor different gastric mucosa and to predict patient prognosis.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xiuchong Yu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Jiaxin Ge
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
| | - Guoliang Ye
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, China
- Institute of Digestive Diseases of Ningbo University, Ningbo, China
- *Correspondence: Junming Guo,
| |
Collapse
|
30
|
Establishment of an Absolute Quantitative Method to Detect a Plasma tRNA-Derived Fragment and Its Application in the Non-Invasive Diagnosis of Gastric Cancer. Int J Mol Sci 2022; 24:ijms24010322. [PMID: 36613767 PMCID: PMC9820402 DOI: 10.3390/ijms24010322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Transfer RNA (tRNA)-derived fragments (tRFs) are a new category of regulatory non-coding RNAs with distinct biological functions in cancer. They are produced from pre-tRNAs or mature tRNAs and their sequences are relatively short; thus, the amplification of tRFs, especially those in body fluids, is faced with certain technical difficulties. In this study, we established a quantitative method to detect plasma tRF-27-87R8WP9N1E5 (tRF-27) and used it to screen gastric cancer patients. (2) A specific stem-loop-structure reverse transcription primer, a TaqMan probe, and amplification primers for tRF-27 were prepared, and the absolute quantitative method was used to measure plasma tRF-27 levels. To determine the noninvasive diagnostic value of tRF-27 in gastric cancer, plasma tRF-27 levels in patients with benign and malignant lesions (120 healthy individuals, 48 patients with benign lesions, 48 patients with precancerous lesions, and 72 patients with early gastric cancer) were analyzed. Plasma tRF-27 levels were also analyzed in 106 preoperative gastric cancer patients, 106 postoperative gastric cancer patients, and 120 healthy individuals. Survival curves and Cox regression models were established and analyzed. (3) A new absolute quantitative method to determine the plasma tRF-27 copy number was established. Plasma tRF-27 levels were significantly increased in gastric cancer patients compared to healthy individuals, and the area under the receiver operating characteristic curve was 0.7767, when the cutoff value was 724,807 copies/mL, with sensitivity and specificity values of 0.6226 and 0.8917, respectively. The positive predictive and negative predictive values were 83.50% and 72.80%, respectively. Plasma tRF-27 levels in postoperative gastric cancer patients were significantly decreased compared to preoperative gastric cancer patients and tended to the levels of healthy individuals. Moreover, tRF-27 levels were closely related to tumor size and Ki67 expression in gastric cancer patients. Prognostic analysis showed that tRF-27 may be an independent predictor of overall survival. (4) This novel and non-invasive method of measuring plasma tRF-27 levels was valuable in the early diagnosis of gastric cancer.
Collapse
|
31
|
Hou J, Li Q, Wang J, Lu W. tRFs and tRNA Halves: Novel Cellular Defenders in Multiple Biological Processes. Curr Issues Mol Biol 2022; 44:5949-5962. [PMID: 36547066 PMCID: PMC9777342 DOI: 10.3390/cimb44120405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
tRNA fragments derived from angiogenin or Dicer cleavage are referred to as tRNA-derived fragments (tRFs) and tRNA halves. tRFs and tRNA halves have been identified in both eukaryotes and prokaryotes and are precisely cleaved at specific sites on either precursor or mature tRNA transcripts rather than via random degradation. tRFs and tRNA halves are highly involved in regulating transcription and translation in a canonical or non-canonical manner in response to cellular stress. In this review, we summarize the biogenesis and types of tRFs and tRNA halves, clarify the biological functions and molecular mechanisms of tRNA fragments in both physiological and pathological processes with a particular focus on their cytoprotective roles in defending against oxidation and apoptosis, and highlight their potential application as biomarkers in determining cell fate.
Collapse
Affiliation(s)
- Jiani Hou
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qianqing Li
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| |
Collapse
|
32
|
Xu D, Qiao D, Lei Y, Zhang C, Bu Y, Zhang Y. Transfer RNA-derived small RNAs (tsRNAs): Versatile regulators in cancer. Cancer Lett 2022; 546:215842. [PMID: 35964819 DOI: 10.1016/j.canlet.2022.215842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
tRNA-derived small RNAs (tsRNAs) represent a novel class of regulatory small non-coding RNAs (sncRNAs), produced by the specific cleavage of transfer RNAs (tRNAs). In recent years, pilot studies one after the other have uncovered the critical roles of tsRNAs in various fundamental biological processes as well as in the development of human diseases including cancer. Based on the newly updated hallmarks of cancer, we provide a comprehensive review regarding the dysregulation, functional implications and complicated molecular mechanisms of tsRNAs in cancer. In addition, the potential technical challenges and future prospects in the fields of tsRNA research are discussed in this review.
Collapse
Affiliation(s)
- Dandan Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Deqian Qiao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. A Novel tiRNA-Gly-GCC-1 Promotes Progression of Urothelial Bladder Carcinoma and Directly Targets TLR4. Cancers (Basel) 2022; 14:cancers14194555. [PMID: 36230476 PMCID: PMC9558499 DOI: 10.3390/cancers14194555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found differential expression profiles of tsRNAs in UBC. As a result, tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Here, after lentiviral transfection in UBC cell lines, the results showed down-regulation of tiRNA-Gly-GCC-1 could inhibit cell proliferation, migration and invasion, promote cell apoptosis, and affect the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. In summary, our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC. Abstract Background: Patients with urothelial bladder carcinoma (UBC) have a poor prognosis and a high risk of progression. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA, have been identified. In our previous study, we found tiRNA-Gly-GCC-1 was significantly upregulated in UBC tissue and might target the predicted target gene toll-like receptor 4 (TLR4) to play a regulatory role in UBC. Thus, the aim of this study was to identify the functional roles of tiRNA-Gly-GCC-1 and the relationship between tiRNA-Gly-GCC-1 and TLR4. Methods: After lentiviral transfection in 5637 and T24 cell lines, quantitative reverse transcription-PCR, Cell Counting Kit-8, IncuCyte ZOOM™ live cell imaging, flow cytometry, Transwell assays, scratch assay, and luciferase assay were performed. Results: The results showed down-regulation of tiRNA-Gly-GCC-1 inhibits cell proliferation, migration and invasion, promotes cell apoptosis, and affects the cell cycle. Besides, tiRNA-Gly-GCC-1 was found to inhibit TLR4 expression by directly targeting its 3′UTR. Conclusions: Our study demonstrated that tiRNA-Gly-GCC-1 promotes the progression of UBC and directly targets TLR4. This study provides novel insights for future investigations to explore the mechanisms and therapeutic targets for UBC.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-18810614607
| |
Collapse
|
34
|
Integrative, In Silico and Comparative Analysis of Breast Cancer Secretome Highlights Invasive-Ductal-Carcinoma-Grade Progression Biomarkers. Cancers (Basel) 2022; 14:cancers14163854. [PMID: 36010848 PMCID: PMC9406168 DOI: 10.3390/cancers14163854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, BC is the most frequently diagnosed cancer in women. The aim of this study was to identify novel secreted biomarkers that may indicate progression to high-grade BC malignancies and therefore predict metastatic potential. A total of 33 studies of breast cancer and 78 of other malignancies were screened via a systematic review for eligibility, yielding 26 datasets, 8 breast cancer secretome datasets, and 18 of other cancers that were included in the comparative secretome analysis. Sequential bioinformatic analysis using online resources enabled the identification of enriched GO_terms, overlapping clusters, and pathway reconstruction. This study identified putative predictors of IDC grade progression and their association with breast cancer patient mortality outcomes, namely, HSPG2, ACTG1, and LAMA5 as biomarkers of in silico pathway prediction, offering a putative approach by which the abovementioned proteins may mediate their effects, enabling disease progression. This study also identified ITGB1, FBN1, and THBS1 as putative pan-cancer detection biomarkers. The present study highlights novel, putative secretome biomarkers that may provide insight into the tumor biology and could inform clinical decision making in the context of IDC management in a non-invasive manner.
Collapse
|
35
|
Zheng J, Li C, Zhu Z, Yang F, Wang X, Jiang P, Yan F. A 5`-tRNA Derived Fragment NamedtiRNA-Val-CAC-001 Works as a Suppressor in Gastric Cancer. Cancer Manag Res 2022; 14:2323-2337. [PMID: 35958946 PMCID: PMC9359412 DOI: 10.2147/cmar.s363629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Junyu Zheng
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Cong Li
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Zining Zhu
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Fengming Yang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Xiaoming Wang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Pan Jiang
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
| | - Feng Yan
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, People’s Republic of China
- Correspondence: Feng Yan, Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 42 Baiziting Road, Nanjing, 210009, Jiangsu, People’s Republic of China, Tel +86-13851641895, Email
| |
Collapse
|
36
|
Li Y, Cui S, Xu Z, Zhang Y, Wu T, Zhang J, Chen Y. Exosomal tRF-Leu-AAG-001 derived from mast cell as a potential non-invasive diagnostic biomarker for endometriosis. BMC Womens Health 2022; 22:253. [PMID: 35752827 PMCID: PMC9233364 DOI: 10.1186/s12905-022-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diagnosis of endometriosis (EMs) is still based on laparoscopic observation. This study tries to verify whether exosomal tRNA-derived fragments (tRFs) in leucorrhea can be used as non-invasive diagnostic markers. METHODS Endometrial tissues and leucorrhea were sampled from women hospitalized in Ningbo University Affiliated Hospital from January 2021 to July 2021 with (n = 26) and without endometriosis (n = 25). Exosomes were isolated from samples by differential centrifugation. The small RNA sequencing was performed to detect the exosomal tRNA halves (tiRNAs)&tRFs. RNA probe and immunofluorescence antibody were used to localize the origin of tRFs. From mast cell lines infected with tRF-Leu-AAG-001 siRNA, we observed the change in vascular capacity and expression of inflammatory factors. The specificity and sensitivity tRF were determined by receiver operating characteristic analyses. RESULTS 63 up-regulated and 45 down-regulated tRFs&tiRNAs were identified in ectopic exosomes. We selected tRF-Leu-AAG-001 as a candidate marker through KEGG pathway enrichment and PCR verification. We found that mast cells highly expressed tRF-Leu-AAG-001 in ectopic foci by immunofluorescence staining. We used siRNA to silenced tRF-Leu-AAG-001 expression in luva, qPCR analysis showed IL-6, IL-10, IL-1β, and TNF-α were significantly decreased. Meanwhile, tRF-Leu-AAG-001 siRNA dramatically reduced the angiogenic ability of luva. Finally, we examined the expression of exosomal tRF-Leu-AAG-001 in the leucorrhea. It was found exosomal tRF-Leu-AAG-001 had high specificity and sensitivity for predicting the occurrence of ectopic disease. CONCLUSIONS Exosomal tRF-Leu-AAG-001 derived from mast cells in ectopic foci might promote inflammation and angiogenesis. Meanwhile, leucorrhea exosomal tRF-Leu-AAG-001 could be a potential diagnostic biomarker for endometriosis.
Collapse
Affiliation(s)
- Yingxue Li
- Ningbo Institute of Medical Sciences, Ningbo, China.,Ningbo University, Ningbo, China
| | - Shuling Cui
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Zemin Xu
- Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, School of Medicine, Ningbo University, Ningbo, China
| | | | - Tao Wu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jing Zhang
- Ningbo Women&Children's Hospital, Ningbo, China
| | - Yichen Chen
- Ningbo Women&Children's Hospital, Ningbo, China. .,Ningbo Institute of Medical Sciences, Ningbo, China. .,Ningbo University, Ningbo, China.
| |
Collapse
|
37
|
Gu X, Zhang Y, Qin X, Ma S, Huang Y, Ju S. Transfer RNA-derived small RNA: an emerging small non-coding RNA with key roles in cancer. Exp Hematol Oncol 2022; 11:35. [PMID: 35658952 PMCID: PMC9164556 DOI: 10.1186/s40164-022-00290-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022] Open
Abstract
Transfer RNAs (tRNAs) promote protein translation by binding to the corresponding amino acids and transporting them to the ribosome, which is essential in protein translation. tRNA-derived small RNAs (tsRNAs) are derived fragments of tRNAs that are cleaved explicitly under certain conditions. An increasing amount of research has demonstrated that tsRNAs have biological functions rather than just being degradation products. tsRNAs can exert functions such as regulating gene expression to influence cancer progression. Their dysregulation is closely associated with various cancers and can serve as diagnostic and prognostic biomarkers for cancer. This review summarizes the generation, classification, and biological functions of tsRNAs, and highlights the roles of tsRNAs in different cancers and their applications as tumor markers.
Collapse
Affiliation(s)
- Xinliang Gu
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Zhang
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinyue Qin
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuo Ma
- Medical School of Nantong University, Nantong University, Nantong, China.,Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuejiao Huang
- Medical School of Nantong University, Nantong University, Nantong, China. .,Department of Medical Oncology, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Xisi Road, No. 20, Nantong, China.
| |
Collapse
|
38
|
Fu BF, Xu CY. Transfer RNA-Derived Small RNAs: Novel Regulators and Biomarkers of Cancers. Front Oncol 2022; 12:843598. [PMID: 35574338 PMCID: PMC9096126 DOI: 10.3389/fonc.2022.843598] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are conventional non-coding RNAs (ncRNAs) with a length between18 and 40 nucleotides (nt) playing a crucial role in treating various human diseases including tumours. Nowadays, with the use of high-throughput sequencing technologies, it has been proven that certain tsRNAs are dysregulated in multiple tumour tissues as well as in the blood serum of cancer patients. Meanwhile, data retrieved from the literature show that tsRNAs are correlated with the regulation of the hallmarks of cancer, modification of tumour microenvironment, and modulation of drug resistance. On the other side, the emerging role of tsRNAs as biomarkers for cancer diagnosis and prognosis is promising. In this review, we focus on the specific characteristics and biological functions of tsRNAs with a focus on their impact on various tumours and discuss the possibility of tsRNAs as novel potential biomarkers for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Bi-Fei Fu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chao-Yang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
39
|
Li J, Cao C, Fang L, Yu W. Serum transfer RNA-derived fragment tRF-31-79MP9P9NH57SD acts as a novel diagnostic biomarker for non-small cell lung cancer. J Clin Lab Anal 2022; 36. [PMID: 35576497 PMCID: PMC9279995 DOI: 10.1002/jcla.24492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background tRNA‐derived fragments (tRFs) have been found to have a crucial function in the pathophysiology of cancers. However, the function of tRFs in non‐small cell lung cancer (NSCLC) is yet unknown. The goal of this study was to assess the tRF‐31‐79MP9P9NH57SD serum expression from NSCLC patients and to determine its diagnostic usefulness. Methods By using stem‐loop quantitative real‐time PCR, we were able to detect various tRF‐31‐79MP9P9NH57SD expressions in 96 NSCLC serum samples, 96 healthy controls, and 20 pairs of NSCLC serum samples pre‐ and post‐surgery (qRT‐PCR). After that, we analyzed its diagnostic effectiveness using the receiver operating characteristic (ROC) curve. Results Serum tRF‐31‐79MP9P9NH57SD expression was higher in NSCLC patients, and levels of tRF‐31‐79MP9P9NH57SD were linked to the clinical stage (p = 0.002) and the malignancy of lymph node (p = 0.012). In addition, after the procedure, the serum tRF‐31‐79MP9P9NH57SD expression in NSCLC patients dropped. With 48.96 percent sensitivity and 90.62 percent specificity, the area under ROC curve (AUC) was 0.733. Conclusion serum tRF‐31‐79MP9P9NH57SD possibly is a new and groundbreaking biomarker for the NSCLC.
Collapse
Affiliation(s)
- Jipeng Li
- Department of Central Laboratory, The Affiliated People's Hospital, Ningbo University, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Laifu Fang
- Department of Pathology, The Affiliated People's Hospital, Ningbo University, Ningbo, China
| | - Wanjun Yu
- Department of Respiratory and Critical Medicine, The Affiliated People's Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
40
|
Qin C, Chen ZH, Cao R, Shi MJ, Tian Y. Differential Expression Profiles and Bioinformatics Analysis of tRNA-Derived Small RNAs in Muscle-Invasive Bladder Cancer in a Chinese Population. Genes (Basel) 2022; 13:genes13040601. [PMID: 35456407 PMCID: PMC9030102 DOI: 10.3390/genes13040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) leads to a large societal burden. Recently, tRNA-derived small RNAs (tsRNAs), a novel type of noncoding RNA (ncRNAs), have been identified. However, the expression patterns and functions of tsRNAs in MIBC have not yet been identified. Here, RNA sequencing, bioinformatics, and quantitative reverse transcription- polymerase chain reaction (qRT-PCR) were used to screen the expression profiles and predict the potential roles of tsRNAs in MIBC. Of 406 tsRNAs differentially expressed in MIBC tissues, 91 tsRNAs were significantly differentially expressed. Then, four candidate tsRNAs, tiRNA-1:34-Val-CAC-2, tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1, were selected. Next, a bioinformatics analysis showed the potential target genes and tsRNA–mRNA network. The most significant and meaningful terms of gene ontology were the positive regulation of the phosphate metabolic process, lamellipodium, and protein-cysteine S-acyltransferase activity in the biological process, cellular component, and molecular function, respectively. In addition, the top four pathways were predicted by the Kyoto Encyclopedia of Genes and Genomes database (KEGG). Finally, qRT-PCR demonstrated a similar expression pattern compared to sequencing data for the candidate tsRNAs. In short, we find differential expression profiles and predict that tiRNA-1:33-Gly-GCC-1, tRF-1:32-Gly-GCC-1, and tRF-+1:T20-Ser-TGA-1 are very likely to engage in the pathophysiological process of MIBC via regulating the target genes in the key pathways.
Collapse
Affiliation(s)
| | | | | | | | - Ye Tian
- Correspondence: ; Tel.: +86-010-63138377
| |
Collapse
|
41
|
Zhang Z, Liu Z, Zhao W, Zhao X, Tao Y. tRF-19-W4PU732S promotes breast cancer cell malignant activity by targeting inhibition of RPL27A (ribosomal protein-L27A). Bioengineered 2022; 13:2087-2098. [PMID: 35030975 PMCID: PMC8974017 DOI: 10.1080/21655979.2021.2023796] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Breast cancer (BC) is a serious threat to female health. tRNA-derived fragments (tRFs) are popular biomarkers for the diagnosis and treatment of cancer. The purpose of this study was to identify tRFs related to BC and to explore the function and regulatory mechanism of crucial tRFs in BC cells. Small RNA database was used to detect the tRF profiles from BC patients and controls. Differentially expressed tRFs were determined by quantitative reverse transcription PCR (RT-qPCR), and a crucial tRF was evaluated through silence and overexpression experiments, and the target gene was investigated by luciferase reporter gene assay, Western blot and rescue experiment. We screened tRF-19-W4PU732S, which was processed from the mature tRNA-Ser-AGA, and significantly highlyexpressed in BC tissues and cells. Inhibition of tRF-19-W4PU732S weakened MDA-MB-231 cell proliferation, migration and invasion, while enhanced apoptosis. On the contrary, overexpression of tRF-19-W4PU732S promoted MCF-7 cell proliferation, migration and invasion, whereasreduced apoptosis. Furthermore, tRF-19-W4PU732S induced BC cell epithelial-to-mesenchymal transition (EMT) and cancer stem-like cells (CSC) phenotypes, such as up-regulation of OCT-4A, SOX2 and Vimentin and down-regulation of E-cadherin. Ribosomal protein-L27A (RPL27A) was a downstream target of tRF-19-W4PU732S, which was lowly expressed in BC cells. The knockdown of RPL27A expression partially restored the promoting effects of tRF-19-W4PU732S on BC cell viability, invasion, migration, EMT and CSC phenotypes, and the suppression of apoptosis. In conclusion, our results manifested that tRF-19-W4PU732S promotes the malignant activity of BC cells by inhibiting RPL27A, which provides a new scientific basis for the treatment of BC.Abbreviations BC: breast cancer; tRNAs: transfer RNAs; tiRNAs: tRNA-derived stressinduced RNAs; tRFs: tRNA-derived fragments; CCK-8: Cell Counting Kit-8; PI: propidium iodide; EMT: epithelial-to-mesenchymal transition; CSC: cancer stem-like cells; RPL27A: ribosomal protein-L27A; RT-qPCR: quantitative reverse transcription PCR.
Collapse
Affiliation(s)
- Zhengxiang Zhang
- Department of Oncology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhiping Liu
- Department of Gastrointestinal Surgery, The Affiliated Hefei Hospital of Anhui Medical University, Hefei, China
| | - WeiDong Zhao
- Department of Oncology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiaohan Zhao
- Department of Oncology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Yunxiang Tao
- Department of Dermatology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
42
|
Long D, Xu Y, Mao G, Xin R, Deng Z, Liao H, Li Z, Yang Z, Yu B, Yang Z, He A, Zhang Z, Kang Y. tRNA-derived fragment TRF365 regulates the metabolism of anterior cruciate ligament cells by targeting IKBKB. Cell Death Dis 2022; 8:19. [PMID: 35013149 PMCID: PMC8748987 DOI: 10.1038/s41420-021-00806-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
tRNA-derived fragments (tRFs) are new noncoding RNAs, and recent studies have shown that tRNAs and tRFs have important functions in cell metabolism via posttranscriptional regulation of gene expression. However, whether tRFs regulate cellular metabolism of the anterior cruciate ligament (ACL) remains elusive. The aim of this study was to investigate the role and action mechanism of tRFs in ACL cell metabolism. A tRF array was used to determine tRF expression profiles in different human ACL cells, and quantitative real-time polymerase chain reaction and fluorescence in situ hybridisation were used to determine TRF365 expression. ACL cells were transfected with a TRF365 mimic or a TRF365 inhibitor to determine whether TRF365 regulates IKBKB expression. A rescue experiment and dual-luciferase reporter assay were conducted to determine whether the 3′-untranslated region (UTR) of IKBKB has a TRF365-binding site. TRF365 was weakly expressed in osteoarthritis (OA) ACL and interleukin-1β-treated ACL cells. IKBKB was highly expressed in OA ACL and interleukin-1β-treated ACL cells; transfection with the TRF365 mimic suppressed IKBKB expression, whereas transfection with the TRF365 inhibitor had the opposite effect. A dual-luciferase reporter assay showed that TRF365 silenced the expression of IKBKB by binding to its 3′-UTR. Thus, TRF365 regulates the metabolism of ACL cells by targeting IKBKB. In summary, TRF365 may provide a new direction for the study of ACL degeneration and on the pathophysiological process of OA.
Collapse
Affiliation(s)
- Dianbo Long
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yiyang Xu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Department of Orthopedics, Shengli Clinical Medical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Guping Mao
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ruobing Xin
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zengfa Deng
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hongyi Liao
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiwen Li
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhi Yang
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Baoxi Yu
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhijian Yang
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Aishan He
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Ziji Zhang
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Yan Kang
- Department of Joint Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China. .,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
43
|
Lu H, Liu L, Han S, Wang B, Qin J, Bu K, Zhang Y, Li Z, Ma L, Tian J, Zhang K, Li T, Cui H, Liu X. Expression of tiRNA and tRF in APP/PS1 transgenic mice and the change of related proteins expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1457. [PMID: 34734009 PMCID: PMC8506760 DOI: 10.21037/atm-21-4318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Background Transcriptomics, such as that of non-coding RNA (ncRNA), which include microRNA (miRNA), circular RNA, and the transfer RNA (tRNA)-derived fragments (tiRNA and tRF) in Alzheimer's disease (AD) have attracted much attention recently. The tiRNA and tRFs are produced when the tRNA splits at specific sites. The expression change and related function of tiRNA and tRFs in AD has not been fully investigated. Methods In our study, APP/PS1 transgenic mice (AD mice model) and healthy control mice were used to discover the differentially expressed tiRNA and tRFs with high-throughput sequencing. Among the differentially expressed tiRNA and tRFs, we chose two tRFs (tRF-Thr-CGT-003 and tRF-Leu-CAA-004) and predicted the target messenger RNAs (mRNAs) with miRanda and Target Scan. The target mRNAs of tRF-related function and pathways were analyzed, then we performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot to validate the related target mRNAs and pathways. Results A total of 27 significantly different tiRNA and tRFs were detected between wild type (WT) and APP/PS1 groups, including 14 up-regulated and 13 down-regulated. Through analyzing the target mRNAs of all differentially expressed tiRNA and tRFs with GO enrichment, we found the target mRNAs could take part in the learning and memory biological process, synapse organization, cognition biological process, synaptic transmission, amyloid-β (Aβ) metabolic process, and so on. We then chose three differentially expressed tRFs for further qPCR validation and passed two tRFs: tRF-Thr-CGT-003 and tRF-Leu-CAA-004, that were found to regulate the calcium regulation-related proteins (the voltage-gated calcium channel γ2 subunit and the RYR1 endoplasmic reticulum calcium released protein) and the retinol metabolism-related proteins (retinoic acid metabolic enzymes CYP2S1, CYP2C68, CYP2S1). Conclusions The APP expression and presenilin mutation in APP/PS1 mice could cause tiRNA and tRFs expression change. Among the differentially expressed tiRNA and tRFs, we found some tRFs took part in the voltage-gated calcium channel γ2 subunit expression and regulation, influencing the neuron calcium homeostasis. Moreover, we also found the tRFs may participate in the regulation of retinol metabolism. Our findings suggest that the dysregulated tiRNA and tRFs may be beneficially exploited as potential diagnostic biomarkers and/or therapeutic targets of AD.
Collapse
Affiliation(s)
- Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu Han
- Department of Electrocardiogram, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
44
|
Zhou Y, Hu J, Liu L, Yan M, Zhang Q, Song X, Lin Y, Zhu D, Wei Y, Fu Z, Hu L, Chen Y, Li X. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2. Cancer Cell Int 2021; 21:502. [PMID: 34537070 PMCID: PMC8449465 DOI: 10.1186/s12935-021-02102-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Accumulating evidence demonstrates that tRFs (tRNA-derived small RNA fragments) and tiRNAs (tRNA-derived stress-induced RNA), an emerging category of regulatory RNA molecules derived from transfer RNAs (tRNAs), are dysregulated in in various human cancer types and play crucial roles. However, their roles and mechanisms in hepatocellular carcinoma (HCC) and liver cancer stem cells (LCSCs) are still unknown. Methods The expression of glycine tRNA-derived fragment (Gly-tRF) was measured by qRT-PCR. Flow cytometric analysis and sphere formation assays were used to determine the properties of LCSCs. Transwell assays and scratch wound assays were performed to detect HCC cell migration. Western blotting was conducted to evaluate the abundance change of Epithelial-mesenchymal transition (EMT)-related proteins. Dual luciferase reporter assays and signalling pathway analysis were performed to explore the underlying mechanism of Gly-tRF functions. Results Gly-tRF was highly expressed in HCC cell lines and tumour tissues. Gly-tRF mimic increased the LCSC subpopulation proportion and LCSC-like cell properties. Gly-tRF mimic promoted HCC cell migration and EMT. Loss of Gly-tRF inhibited HCC cell migration and EMT. Mechanistically, Gly-tRF decreased the level of NDFIP2 mRNA by binding to the NDFIP2 mRNA 3′ UTR. Importantly, overexpression of NDFIP2 weakened the promotive effects of Gly-tRF on LCSC-like cell sphere formation and HCC cell migration. Signalling pathway analysis showed that Gly-tRF increased the abundance of phosphorylated AKT. Conclusions Gly-tRF enhances LCSC-like cell properties and promotes EMT by targeting NDFIP2 and activating the AKT signalling pathway. Gly-tRF plays tumor-promoting role in HCC and may lead to a potential therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02102-8.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Jinjing Hu
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.,School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Lu Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Mengchao Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Qiyu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaojing Song
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yan Lin
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Yongjian Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zongli Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Liming Hu
- School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Yue Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
45
|
Li X, Liu X, Zhao D, Cui W, Wu Y, Zhang C, Duan C. tRNA-derived small RNAs: novel regulators of cancer hallmarks and targets of clinical application. Cell Death Discov 2021; 7:249. [PMID: 34537813 PMCID: PMC8449783 DOI: 10.1038/s41420-021-00647-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
tRNAs are a group of conventional noncoding RNAs (ncRNAs) with critical roles in the biological synthesis of proteins. Recently, tRNA-derived small RNAs (tsRNAs) were found to have important biological functions in the development of human diseases including carcinomas, rather than just being considered pure degradation material. tsRNAs not only are abnormally expressed in the cancer tissues and serum of cancer patients, but also have been suggested to regulate various vital cancer hallmarks. On the other hand, the application of tsRNAs as biomarkers and therapeutic targets is promising. In this review, we focused on the basic characteristics of tsRNAs, and their biological functions known thus far, and explored the regulatory roles of tsRNAs in cancer hallmarks including proliferation, apoptosis, metastasis, tumor microenvironment, drug resistance, cancer stem cell phenotype, and cancer cell metabolism. In addition, we also discussed the research progress on the application of tsRNAs as tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Xianyu Liu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China.,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China
| | - Yingfang Wu
- Centre of Stomatology, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China. .,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, P. R. China.
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, P. R. China. .,Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, P. R. China. .,Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.
| |
Collapse
|