1
|
Huchede P, Meyer S, Berthelot C, Hamadou M, Bertrand-Chapel A, Rakotomalala A, Manceau L, Tomine J, Lespinasse N, Lewandowski P, Cordier-Bussat M, Broutier L, Dutour A, Rochet I, Blay JY, Degletagne C, Attignon V, Montero-Carcaboso A, Le Grand M, Pasquier E, Vasiljevic A, Gilardi-Hebenstreit P, Meignan S, Leblond P, Ribes V, Cosset E, Castets M. BMP2 and BMP7 cooperate with H3.3K27M to promote quiescence and invasiveness in pediatric diffuse midline gliomas. eLife 2024; 12:RP91313. [PMID: 39373720 PMCID: PMC11458179 DOI: 10.7554/elife.91313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
Pediatric diffuse midline gliomas (pDMG) are an aggressive type of childhood cancer with a fatal outcome. Their major epigenetic determinism has become clear, notably with the identification of K27M mutations in histone H3. However, the synergistic oncogenic mechanisms that induce and maintain tumor cell phenotype have yet to be deciphered. In 20 to 30% of cases, these tumors have an altered BMP signaling pathway with an oncogenic mutation on the BMP type I receptor ALK2, encoded by ACVR1. However, the potential impact of the BMP pathway in tumors non-mutated for ACVR1 is less clear. By integrating bulk, single-cell, and spatial transcriptomic data, we show here that the BMP signaling pathway is activated at similar levels between ACVR1 wild-type and mutant tumors and identify BMP2 and BMP7 as putative activators of the pathway in a specific subpopulation of cells. By using both pediatric isogenic glioma lines genetically modified to overexpress H3.3K27M and patients-derived DIPG cell lines, we demonstrate that BMP2/7 synergizes with H3.3K27M to induce a transcriptomic rewiring associated with a quiescent but invasive cell state. These data suggest a generic oncogenic role for the BMP pathway in gliomagenesis of pDMG and pave the way for specific targeting of downstream effectors mediating the K27M/BMP crosstalk.
Collapse
Affiliation(s)
- Paul Huchede
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Swann Meyer
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Clement Berthelot
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Maud Hamadou
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Adrien Bertrand-Chapel
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Andria Rakotomalala
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Line Manceau
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Julia Tomine
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Nicolas Lespinasse
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Paul Lewandowski
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Martine Cordier-Bussat
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Aurelie Dutour
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Isabelle Rochet
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | - Jean-Yves Blay
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | | | | | - Angel Montero-Carcaboso
- Preclinical Therapeutics and Drug Delivery Research Program, Department of Oncology, Hospital Sant Joan de DéuBarcelonaSpain
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Université Aix-Marseille, Institut Paoli- Calmettes, Centre de Lutte Contre le Cancer de la région PACA, INSERM 1068, CNRS 7258MarseilleFrance
| | - Alexandre Vasiljevic
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hôpital Femme-Mère EnfantBronFrance
| | | | - Samuel Meignan
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER Cancer Heterogeneity Plasticity and Resistance to Therapies, Centre Oscar LambretLilleFrance
| | - Pierre Leblond
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
- Department of Pediatric Oncology, Institute of Pediatric Hematology and Oncology (IHOPe), Centre Léon BérardLyonFrance
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques MonodParisFrance
| | - Erika Cosset
- GLIMMER Of lIght (GLIoblastoma MetabolisM, HetERogeneity, and OrganoIds) team, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| | - Marie Castets
- Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286LyonFrance
| |
Collapse
|
2
|
Haizel-Cobbina J, Chotai S, Labuschagne J, Belete A, Ashagere Y, Shabani HK, Copeland W, Sichizya K, Ahmad MH, Nketiah-Boakye F, Dewan MC. Pediatric neurosurgical-oncology scope and management paradigms in Sub-Saharan Africa: a collaboration among 7 referral hospitals on the subcontinent. Front Oncol 2023; 13:1257099. [PMID: 38023182 PMCID: PMC10646489 DOI: 10.3389/fonc.2023.1257099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Understanding of the epidemiology and biology of pediatric CNS tumors has advanced dramatically over the last decade; however there remains a discrepancy in the understanding of epidemiologic data and clinical capacity between high- and lower-income countries. Objective We collected and analyzed hospital-level burden and capacity-oriented data from pediatric neurosurgical oncology units at 7 referral hospitals in Sub-Saharan Africa (SSA). Methods A cross sectional epidemiological survey was conducted using REDCap at the 7 SSA sites, capturing 3-month aggregate data for patients managed over a total of 9 months. Descriptive statistical analyses for the aggregate data were performed. Results Across the neurosurgical spectrum, 15% of neurosurgery outpatient and 16% of neurosurgery operative volume was represented by pediatric neuro-oncology across the 7 study sites. Eighty-six percent and 87% of patients who received surgery underwent preoperative CT scan and/or MRI respectively. Among 312 patients evaluated with a CNS tumor, 211 (68%) underwent surgery. Mean surgery wait time was 26.6 ± 36.3 days after initial presentation at the clinic. The most common tumor location was posterior fossa (n=94, 30%), followed by sellar/suprasellar region (n=56, 18%). Histopathologic analysis was performed for 189 patients (89%). The most common pathologic diagnosis was low grade glioma (n=43, 23%), followed by medulloblastoma (n=37, 20%), and craniopharyngioma (n=31, 17%). Among patients for whom adjuvant therapy was indicated, only 26% received chemotherapy and 15% received radiotherapy. Conclusion The histopathologic variety of pediatric brain and spinal tumors managed across 7 SSA referral hospitals was similar to published accounts from other parts of the world. About two-thirds of patients received a tumor-directed surgery with significant inter-institutional variability. Less than a third of patients received adjuvant therapy when indicated. Multi-dimensional capacity building efforts in neuro-oncology are necessary to approach parity in the management of children with brain and spinal tumors in SSA.
Collapse
Affiliation(s)
- Joseline Haizel-Cobbina
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Silky Chotai
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jason Labuschagne
- Department of Paediatric Neurosurgery, Nelson Mandela Children’s Hospital, Johannesburg, South Africa
| | - Addisalem Belete
- Department of Neurosurgery, Zewditu Memorial Hospital, Addis Ababa, Ethiopia
| | - Yordanos Ashagere
- Department of Neurosurgery, Zewditu Memorial Hospital, Addis Ababa, Ethiopia
| | - Hamisi K. Shabani
- Department of Neurosurgery, Muhimbili Orthopaedic Institute, Dar es Salaam, Tanzania
| | - William Copeland
- Department of Neurosurgery, Tenwek Mission Hospital, Bomet, Kenya
| | - Kachinga Sichizya
- Department of Neurosurgery, University Teaching Hospital, Lusaka, Zambia
| | | | | | - Michael C. Dewan
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Jackson ER, Duchatel RJ, Staudt DE, Persson ML, Mannan A, Yadavilli S, Parackal S, Game S, Chong WC, Jayasekara WSN, Grand ML, Kearney PS, Douglas AM, Findlay IJ, Germon ZP, McEwen HP, Beitaki TS, Patabendige A, Skerrett-Byrne DA, Nixon B, Smith ND, Day B, Manoharan N, Nagabushan S, Hansford JR, Govender D, McCowage GB, Firestein R, Howlett M, Endersby R, Gottardo NG, Alvaro F, Waszak SM, Larsen MR, Colino-Sanguino Y, Valdes-Mora F, Rakotomalala A, Meignan S, Pasquier E, André N, Hulleman E, Eisenstat DD, Vitanza NA, Nazarian J, Koschmann C, Mueller S, Cain JE, Dun MD. ONC201 in combination with paxalisib for the treatment of H3K27-altered diffuse midline glioma. Cancer Res 2023; 83:CAN-23-0186. [PMID: 37145169 PMCID: PMC10345962 DOI: 10.1158/0008-5472.can-23-0186] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/06/2023]
Abstract
Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.
Collapse
Affiliation(s)
- Evangeline R. Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sridevi Yadavilli
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Brain Tumor Institute, Children's National Hospital, Washington, DC
| | - Sarah Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Shaye Game
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Wai Chin Chong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - W. Samantha N. Jayasekara
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Marion Le Grand
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
| | - Padraic S. Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Alicia M. Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J. Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Holly P. McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tyrone S. Beitaki
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - David A. Skerrett-Byrne
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan D. Smith
- Analytical and Biomolecular Research Facility Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bryan Day
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Neevika Manoharan
- Department of Paediatric Oncology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Sumanth Nagabushan
- Department of Paediatric Oncology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women's and Children's Hospital, South Australia Health and Medical Research Institute, South Australia ImmunoGenomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Dinisha Govender
- Department of Oncology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Geoff B. McCowage
- Department of Oncology, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Meegan Howlett
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Raelene Endersby
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Nicholas G. Gottardo
- Brain Tumor Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
- Department of Pediatric and Adolescent Oncology and Hematology, Perth Children's Hospital, Perth, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Sebastian M. Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Yolanda Colino-Sanguino
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of NSW, Sydney, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetics Biology and Therapeutics, Precision Medicine Theme, Children's Cancer Institute, Sydney, New South Wales, Australia
- School of Women's and Children's Health, University of NSW, Sydney, New South Wales, Australia
| | - Andria Rakotomalala
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Samuel Meignan
- Tumorigenesis and Resistance to Treatment Unit, Centre Oscar Lambret, Lille, France
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277, CANTHER, Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Eddy Pasquier
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
- Metronomics Global Health Initiative, Marseille, France
| | - Nicolas André
- Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes, Marseille, France
- Metronomics Global Health Initiative, Marseille, France
- Department of Pediatric Oncology, La Timone Children's Hospital, AP-HM, Marseille, France
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - David D. Eisenstat
- Children's Cancer Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Laboratory, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC
- Department of Pediatrics, University Children's Hospital Zurich, Zurich, Switzerland
- The George Washington University, School of Medicine and Health Sciences, Washington, DC
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Sabine Mueller
- Department of Pediatrics, University Children's Hospital Zurich, Zurich, Switzerland
- Department of Neurology, Neurosurgery and Pediatric, University of California, San Francisco, California
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| |
Collapse
|
4
|
Persson ML, Douglas AM, Alvaro F, Faridi P, Larsen MR, Alonso MM, Vitanza NA, Dun MD. The intrinsic and microenvironmental features of diffuse midline glioma; implications for the development of effective immunotherapeutic treatment strategies. Neuro Oncol 2022; 24:1408-1422. [PMID: 35481923 PMCID: PMC9435509 DOI: 10.1093/neuonc/noac117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse midline glioma (DMG), including those of the brainstem (diffuse intrinsic pontine glioma), are pediatric tumors of the central nervous system (CNS). Recognized as the most lethal of all childhood cancers, palliative radiotherapy remains the only proven treatment option, however, even for those that respond, survival is only temporarily extended. DMG harbor an immunologically “cold” tumor microenvironment (TME) with few infiltrating immune cells. The mechanisms underpinning the cold TME are not well understood. Low expression levels of immune checkpoint proteins, including PD-1, PD-L1, and CTLA-4, are recurring features of DMG and likely contribute to the lack of response to immune checkpoint inhibitors (ICIs). The unique epigenetic signatures (including stem cell-like methylation patterns), a low tumor mutational burden, and recurring somatic mutations (H3K27M, TP53, ACVR1, MYC, and PIK3CA), possibly play a role in the reduced efficacy of traditional immunotherapies. Therefore, to circumvent the lack of efficacy thus far seen for the use of ICIs, adoptive cell transfer (including chimeric antigen receptor T cells) and the use of oncolytic viruses, are currently being evaluated for the treatment of DMG. It remains an absolute imperative that we improve our understanding of DMG’s intrinsic and TME features if patients are to realize the potential benefits offered by these sophisticated treatments. Herein, we summarize the limitations of immunotherapeutic approaches, highlight the emerging safety and clinical efficacy shown for sophisticated cell-based therapies, as well as the evolving knowledge underpinning the DMG-immune axis, to guide the development of immunotherapies that we hope will improve outcomes.
Collapse
Affiliation(s)
- Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Pouya Faridi
- Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Nicholas A Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Pediatric Hematology, Oncology, Bone Marrow Transplant, and Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, Seattle, WA, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia.,Precision Medicine Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
5
|
Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene 2021; 41:461-475. [PMID: 34759345 PMCID: PMC8782719 DOI: 10.1038/s41388-021-02102-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Diffuse midline glioma (DMG) is a deadly pediatric and adolescent central nervous system (CNS) tumor localized along the midline structures of the brain atop the spinal cord. With a median overall survival (OS) of just 9–11-months, DMG is characterized by global hypomethylation of histone H3 at lysine 27 (H3K27me3), driven by recurring somatic mutations in H3 genes including, HIST1H3B/C (H3.1K27M) or H3F3A (H3.3K27M), or through overexpression of EZHIP in patients harboring wildtype H3. The recent World Health Organization’s 5th Classification of CNS Tumors now designates DMG as, ‘H3 K27-altered’, suggesting that global H3K27me3 hypomethylation is a ubiquitous feature of DMG and drives devastating transcriptional programs for which there are no treatments. H3-alterations co-segregate with various other somatic driver mutations, highlighting the high-level of intertumoral heterogeneity of DMG. Furthermore, DMG is also characterized by very high-level intratumoral diversity with tumors harboring multiple subclones within each primary tumor. Each subclone contains their own combinations of driver and passenger lesions that continually evolve, making precision-based medicine challenging to successful execute. Whilst the intertumoral heterogeneity of DMG has been extensively investigated, this is yet to translate to an increase in patient survival. Conversely, our understanding of the non-genomic factors that drive the rapid growth and fatal nature of DMG, including endogenous and exogenous microenvironmental influences, neurological cues, and the posttranscriptional and posttranslational architecture of DMG remains enigmatic or at best, immature. However, these factors are likely to play a significant role in the complex biological sequelae that drives the disease. Here we summarize the heterogeneity of DMG and emphasize how analysis of the posttranslational architecture may improve treatment paradigms. We describe factors that contribute to treatment response and disease progression, as well as highlight the potential for pharmaco-proteogenomics (i.e., the integration of genomics, proteomics and pharmacology) in the management of this uniformly fatal cancer.
Collapse
|
6
|
Duchatel RJ, Mannan A, Woldu AS, Hawtrey T, Hindley PA, Douglas AM, Jackson ER, Findlay IJ, Germon ZP, Staudt D, Kearney PS, Smith ND, Hindley KE, Cain JE, André N, La Madrid AM, Nixon B, De Iuliis GN, Nazarian J, Irish K, Alvaro F, Eisenstat DD, Beck A, Vitanza NA, Mueller S, Morris JC, Dun MD. Preclinical and clinical evaluation of German-sourced ONC201 for the treatment of H3K27M-mutant diffuse intrinsic pontine glioma. Neurooncol Adv 2021; 3:vdab169. [PMID: 34988452 PMCID: PMC8709907 DOI: 10.1093/noajnl/vdab169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem tumor for which radiation is the only treatment. Case studies report a clinical response to ONC201 for patients with H3K27M-mutant gliomas. Oncoceutics (ONC201) is only available in the United States and Japan; however, in Germany, DIPG patients can be prescribed and dispensed a locally produced compound—ONC201 German-sourced ONC201 (GsONC201). Pediatric oncologists face the dilemma of supporting the administration of GsONC201 as conjecture surrounds its authenticity. Therefore, we compared GsONC201 to original ONC201 manufactured by Oncoceutics Inc. Methods Authenticity of GsONC201 was determined by high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Biological activity was shown via assessment of on-target effects, in vitro growth, proliferation, and apoptosis analysis. Patient-derived xenograft mouse models were used to assess plasma and brain tissue pharmacokinetics, pharmacodynamics, and overall survival (OS). The clinical experience of 28 H3K27M+ mutant DIPG patients who received GsONC201 (2017–2020) was analyzed. Results GsONC201 harbored the authentic structure, however, was formulated as a free base rather than the dihydrochloride salt used in clinical trials. GsONC201 in vitro and in vivo efficacy and drug bioavailability studies showed no difference compared to Oncoceutics ONC201. Patients treated with GsONC201 (n = 28) showed a median OS of 18 months (P = .0007). GsONC201 patients who underwent reirradiation showed a median OS of 22 months compared to 12 months for GsONC201 patients who did not (P = .012). Conclusions This study confirms the biological activity of GsONC201 and documents the OS of patients who received the drug; however, GsONC201 was never used as a monotherapy.
Collapse
Affiliation(s)
- Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ameha S Woldu
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Phoebe A Hindley
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Jewells Medical Centre, Jewells, New South Wales, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Padraic S Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate E Hindley
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Sash Small Animal Specialist Hospital, Tuggerah, New South Wales, Australia
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Nicolas André
- Department of Pediatric Oncology, La Timone Children's Hospital, AP-HM, Marseille, France.,SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Aix Marseille Univ, Marseille, France
| | - Andres Morales La Madrid
- Laboratory of Developmental Cancer, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Oncology, Hospital Sant Joan de Déu, Barcelona, Spain.,Neuro-Oncology Unit, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Brett Nixon
- Reproductive Science Group, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Geoffry N De Iuliis
- Reproductive Science Group, College of Engineering, Science and Environment, University of Newcastle, Callaghan, New South Wales, Australia
| | - Javad Nazarian
- Children's National Medical Center, Washington, District of Columbia., USA.,University Children's Hospital Zurich, Zurich, Switzerland
| | - Kathleen Irish
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| | - David D Eisenstat
- Children's Cancer Centre, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia.,Neuro-Oncology Laboratory, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Beck
- Center for Neuropathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Division of Pediatric Hematology/Oncology, Department of Pediatrics, Seattle Children's Hospital, Seattle, Washington, USA
| | - Sabine Mueller
- University Children's Hospital Zurich, Zurich, Switzerland.,Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, California, USA
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|