1
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Wang S, Wu J, Zhao W, Li M, Li S. CEBPB upregulates P4HA2 to promote the malignant biological behavior in IDH1 wildtype glioma. FASEB J 2023; 37:e22848. [PMID: 36906285 DOI: 10.1096/fj.202201244rrrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/13/2023]
Abstract
Temozolomide (TMZ), the primary drug for glioma treatment, has limited treatment efficacy. Additionally, considerable evidence shows that isocitrate dehydrogenase 1 mutation-type (IDH1 mut) gliomas have a better response to TMZ than isocitrate dehydrogenase 1 wildtype (IDH1 wt) gliomas. Here, we aimed to identify potential mechanisms underlying this phenotype. Herein, the Cancer Genome Atlas bioinformatic data and 30 clinical samples from patients were analyzed to reveal the expression level of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT) Enhancer Binding Protein Beta (CEBPB) and prolyl 4-hydroxylase subunit alpha 2 (P4HA2) in gliomas. Next, cellular and animal experiments, including cell proliferation, colony formation, transwell, CCK-8, and xenograft assays, were performed to explore the tumor-promoting effects of P4HA2 and CEBPB. Then, chromatin immunoprecipitation (ChIP) assays were used to confirm the regulatory relationships between them. Finally, a co-immunoprecipitation (Co-IP) assay was performed to confirm the effect of IDH1-132H to CEBPB proteins. We found that CEBPB and P4HA2 expression was significantly upregulated in IDH1 wt gliomas and associated with poor prognosis. CEBPB knockdown inhibited the proliferation, migration, invasion, and temozolomide resistance of glioma cells and hindered the growth of glioma xenograft tumors. CEBPE, as a transcription factor, exerted its function by transcriptionally upregulating P4HA2 expression in glioma cells. Importantly, CEBPB is prone to ubiquitin-proteasomal degradation in IDH1 R132H glioma cells. We also demonstrated that both genes are related to collagen synthesis, as confirmed by in vivo experiments. Thus, CEBPE promotes proliferation and TMZ resistance by inducing P4HA2 expression in glioma cells and offers a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jingheng Wu
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Wujun Zhao
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China.,Department of Neurosurgery of the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Miaomiao Li
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Shaoyi Li
- Department of Functional Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
3
|
Carvajal-Moreno J, Hernandez VA, Wang X, Li J, Yalowich JC, Elton TS. Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase II β Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. J Pharmacol Exp Ther 2023; 384:265-276. [PMID: 36410793 PMCID: PMC9875313 DOI: 10.1124/jpet.122.001429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
DNA topoisomerase IIα (TOP2α/170; 170 kDa) and topoisomerase IIβ (TOP2β/180; 180 kDa) are targets for a number of anticancer drugs, whose clinical efficacy is attenuated by chemoresistance. Our laboratory selected for an etoposide-resistant K562 clonal subline designated K/VP.5. These cells exhibited decreased TOP2α/170 and TOP2β/180 expression. We previously demonstrated that a microRNA-9 (miR-9)-mediated posttranscriptional mechanism plays a role in drug resistance via reduced TOP2α/170 protein in K/VP.5 cells. Here, it is hypothesized that a similar miR-9 mechanism is responsible for decreased TOP2β/180 levels in K/VP.5 cells. Both miR-9-3p and miR-9-5p are overexpressed in K/VP.5 compared with K562 cells, demonstrated by microRNA (miRNA) sequencing and quantitative polymerase chain reaction. The 3'-untranslated region (3'-UTR) of TOP2β/180 contains miRNA recognition elements (MRE) for both miRNAs. Cotransfection of K562 cells with a luciferase reporter plasmid harboring TOP2β/180 3'-UTR plus miR-9-3p or miR-9-5p mimics resulted in statistically significant decreased luciferase expression. miR-9-3p and miR-9-5p MRE mutations prevented this decrease, validating direct interaction between these miRNAs and TOP2β/180 mRNA. Transfection of K562 cells with miR-9-3p/5p mimics led to decreased TOP2β protein levels without a change in TOP2β/180 mRNA and resulted in reduced TOP2β-specific XK469-induced DNA damage. Conversely, K/VP.5 cells transfected with miR-9-3p/5p inhibitors led to increased TOP2β/180 protein without a change in TOP2β/180 mRNA and resulted in enhancement of XK469-induced DNA damage. Taken together, these results strongly suggest that TOP2β/180 mRNA is translationally repressed by miR-9-3p/5p, that these miRNAs play a role in acquired resistance to etoposide, and that they are potential targets for circumvention of resistance to TOP2-targeted agents. SIGNIFICANCE STATEMENT: Results presented here indicate that miR-9-3p and miR-9-5p play a role in acquired resistance to etoposide via decreased DNA topoisomerase IIβ 180 kDa protein levels. These findings contribute further information about and potential strategies for circumvention of drug resistance by modulation of microRNA levels. In addition, miR-9-3p and miR-9-5p overexpression in cancer chemoresistance may lead to future validation as biomarkers of responsiveness to DNA topoisomerase II-targeted therapy.
Collapse
Affiliation(s)
- Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Victor A Hernandez
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinyi Wang
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology (J.C.-M., V.A.H., X.W., J.C.Y., T.S.E.) and Division of Outcomes and Translational Science (J.I.), College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
4
|
Garnier D, Ratcliffe E, Briand J, Cartron PF, Oliver L, Vallette FM. The Activation of Mesenchymal Stem Cells by Glioblastoma Microvesicles Alters Their Exosomal Secretion of miR-100-5p, miR-9-5p and let-7d-5p. Biomedicines 2022; 10:biomedicines10010112. [PMID: 35052791 PMCID: PMC8773192 DOI: 10.3390/biomedicines10010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, and despite initial response to chemo- and radio-therapy, the persistence of glioblastoma stem cells (GSCs) unfortunately always results in tumor recurrence. It is now largely admitted that tumor cells recruit normal cells, including mesenchymal stem cells (MSCs), and components of their environment, to participate in tumor progression, building up what is called the tumor microenvironment (TME). While growth factors and cytokines constitute essential messengers to pass on signals between tumor and TME, recent uncovering of extracellular vesicles (EVs), composed of microvesicles (MVs) and exosomes, opened new perspectives to define the modalities of this communication. In the GBM context particularly, we investigated what could be the nature of the EV exchange between GSCs and MSCs. We show that GSCs MVs can activate MSCs into cancer-associated fibroblasts (CAFs)-like cells, that subsequently increase their secretion of exosomes. Moreover, a significant decrease in anti-tumoral miR-100-5p, miR-9-5p and let-7d-5p was observed in these exosomes. This clearly suggests a miRNA-mediated GBM tumor promotion by MSCs exosomes, after their activation by GBM MVs.
Collapse
Affiliation(s)
- Delphine Garnier
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France
- Correspondence:
| | - Edward Ratcliffe
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Joséphine Briand
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - Lisa Oliver
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| | - François M. Vallette
- CRCINA INSERM U1232, CHU de Nantes, Université de Nantes, 44000 Nantes, France; (E.R.); (J.B.); (P.-F.C.); (L.O.); (F.M.V.)
- LaBCT, Institut de Cancérologie de L’Ouest, 44800 Saint Herblain, France
| |
Collapse
|