1
|
Engelen Y, Demuynck R, Ramon J, Breckpot K, De Smedt S, Lajoinie GPR, Braeckmans K, Krysko DV, Lentacker I. Immunogenic cell death as interplay between physical anticancer modalities and immunotherapy. J Control Release 2025:113721. [PMID: 40368187 DOI: 10.1016/j.jconrel.2025.113721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Current cancer treatment strategies in practice nowadays often face limitations in effectiveness due to factors such as resistance, recurrence, or suboptimal outcomes. Traditional approaches like chemotherapy often come with severe systemic side effects due to their non-specific action, prompting the development of more targeted therapies. Among these, physical ablation techniques such as radiotherapy (RT) and focused ultrasound (FUS) have gained attention for their ability to precisely target malignant tissues, reduce physical and mental stress for the patients, and minimize recovery time. These therapies also aim to stimulate the immune system through a process referred to as immunogenic cell death (ICD), enhancing the body's ability to fight cancer, explaining abscopal effects. RT has been the most established of the abovementioned techniques for decades, and will not be included in the review. While initially focused on complete tumor ablation, these techniques are now shifting towards milder, more controlled applications that induce ICD without extensive tissue damage. This review explores how physical ablation therapies can harness ICD to boost anticancer immunity, emphasizing their potential to complement immunotherapies and improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Y Engelen
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - R Demuynck
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - J Ramon
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - K Breckpot
- Laboratory for Molecular and Cellular Therapy, Translational Oncology Research Center, Department of Biomedical Sciences, Faculty of Pharmacy and Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - S De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| | - G P R Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center, and Max Planck Center for Complex Fluid Dynamics, University of Twente, Enschede, the Netherlands
| | - K Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Biophotonics Research Group, Ghent University, 9000 Ghent, Belgium
| | - D V Krysko
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - I Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Szwed M, Jost T, Majka E, Gharibkandi NA, Majkowska-Pilip A, Frey B, Bilewicz A, Fietkau R, Gaipl U, Marczak A, Lubgan D. Pt-Au Nanoparticles in Combination with Near-Infrared-Based Hyperthermia Increase the Temperature and Impact on the Viability and Immune Phenotype of Human Hepatocellular Carcinoma Cells. Int J Mol Sci 2025; 26:1574. [PMID: 40004038 PMCID: PMC11855494 DOI: 10.3390/ijms26041574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Near-infrared light (NIR)-responsive metal-based nanoparticles (NPs) could be used for tumour therapy. We examined how platinum (Pt), gold (Au), and core-shell Pt-Au NPs affect the viability of human hepatocellular carcinoma (HCC) cell lines (Hep3B, HepG2, and Huh7D-12) alone and in combination with NIR exposure. In addition, the expression of immune checkpoint molecules (ICMs) on the tumour cells was analysed. We revealed that the cytotoxicity and programmed cell death induction of Au and Pt-Au NPs toward HCC cells could be enhanced by NIR with 960 nm in a different way. Pt-Au NPs were the only particles that resulted in an additional temperature increase of up to 2 °C after NIR. Regarding the tumour cell immune phenotype, not all of the cells experienced changes in immune phenotype. NIR itself was the trigger of the alterations, while the NPs did not significantly affect the expression of most of the examined ICMs, such as PD-L1, PD-L1, HVEM, CD70, ICOS-L, Ox40-L, and TNFRSF9. The combination of Pt-Au NPs with NIR resulted in the most prominent increase of ICMs in HepG2 cells. We conclude that the thermotherapeutic effect of Pt-Au NP application and NIR could be beneficial in multimodal therapy settings in liver cancer for selected patients.
Collapse
Affiliation(s)
- Marzena Szwed
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Tina Jost
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Emilia Majka
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Nasrin Abbasi Gharibkandi
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland; (E.M.); (N.A.G.); (A.M.-P.); (A.B.)
| | - Rainer Fietkau
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Udo Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Dorota Lubgan
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany; (T.J.); (B.F.); (U.G.); (D.L.)
- Comprehensive Cancer Center Erlangen-EMN, D-91054 Erlangen, Germany;
- Department of Radiation Oncology, Universitatsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie, D-91054 Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
3
|
He M, Chen S, Yu H, Fan X, Wu H, Wang Y, Wang H, Yin X. Advances in nanoparticle-based radiotherapy for cancer treatment. iScience 2025; 28:111602. [PMID: 39834854 PMCID: PMC11743923 DOI: 10.1016/j.isci.2024.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Radiotherapy has long been recognized as an effective conventional approach in both clinical and scientific research, primarily through mechanisms involving DNA destruction or the generation of reactive oxygen species to target tumors. However, significant challenges persist, including the unavoidable damage to normal tissues and the development of radiation resistance. As a result, nanotechnology-based radiotherapy has garnered considerable attention for its potential to enhance precision in irradiation, improve radiosensitization, and achieve therapeutic advancements. Importantly, radiotherapy alone frequently falls short of fully eradicating tumors. Consequently, to augment the efficacy of radiotherapy, it is often integrated with other therapeutic strategies. This review elucidates the mechanisms of radiotherapy sensitization based on diverse nanoparticles. Typically, radiotherapy is sensitized through augmenting reactive oxygen species production, targeted radiotherapy, hypoxia relief, enhancement of antitumor immune microenvironment, and G2/M cell cycle arrest. Moreover, the incorporation of nanoparticle-based anti-tumor strategies with radiotherapy markedly enhances the current state of radiotherapy. Additionally, a compilation of clinical trials utilizing nano-radioenhancers is presented. Finally, future prospects for clinical translation in this field are thoroughly examined.
Collapse
Affiliation(s)
- Meijuan He
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shixiong Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Hongwei Yu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuhui Fan
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hong Wu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yihui Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
| | - Han Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai General Hospital Branch of National Center for Translational Medicine (Shanghai), Shanghai 201620, China
- Jiading Branch of Shanghai General Hospital, Shanghai 201803, China
| | - Xiaorui Yin
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
4
|
Righini MF, Durham A, Tsoutsou PG. Hyperthermia and radiotherapy: physiological basis for a synergistic effect. Front Oncol 2024; 14:1428065. [PMID: 39165690 PMCID: PMC11333208 DOI: 10.3389/fonc.2024.1428065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
In cancer treatment, mild hyperthermia (HT) represents an old, but recently revived opportunity to increase the efficacy of radiotherapy (RT) without increasing side effects, thereby widening the therapeutic window. HT disrupts cellular homeostasis by acting on multiple targets, and its combination with RT produces synergistic antitumoral effects on specific pathophysiological mechanisms, associated to DNA damage and repair, hypoxia, stemness and immunostimulation. HT is furthermore associated to direct tumor cell kill, particularly in higher temperature levels. A phenomenon of temporary resistance to heat, known as thermotolerance, follows each HT session. Cancer treatment requires innovative concepts and combinations to be tested but, for a meaningful development of clinical trials, the understanding of the underlying mechanisms of the tested modalities is essential. In this mini-review, we aimed to describe the synergistic effects of the combination of HT with RT as well as the phenomena of thermal shock and thermotolerance, in order to stimulate clinicians in new, clinically relevant concepts and combinations, which become particularly relevant in the era of technological advents in both modalities but also cancer immunotherapy.
Collapse
Affiliation(s)
| | - André Durham
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Pelagia G. Tsoutsou
- Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiation Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
5
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
6
|
Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus 2024; 16:e52511. [PMID: 38371088 PMCID: PMC10874252 DOI: 10.7759/cureus.52511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer involves intricate pathological mechanisms marked by complexities such as cytotoxicity, drug resistance, stem cell proliferation, and inadequate specificity in current chemotherapy approaches. Cancer therapy has embraced diverse nanomaterials renowned for their unique magnetic, electrical, and optical properties to address these challenges. Despite the expanding corpus of knowledge in this area, there has been less advancement in approving nano drugs for use in clinical settings. Nanotechnology, and more especially the development of intelligent nanomaterials, has had a profound impact on cancer research and treatment in recent years. Due to their large surface area, nanoparticles can adeptly encapsulate diverse compounds. Furthermore, the modification of nanoparticles is achievable through a broad spectrum of bio-based substrates, including DNA, aptamers, RNA, and antibodies. This functionalization substantially enhances their theranostic capabilities. Nanomaterials originating from biological sources outperform their conventionally created counterparts, offering advantages such as reduced toxicity, lower manufacturing costs, and enhanced efficiency. This review uses carbon nanomaterials, including graphene-based materials, carbon nanotubes (CNTs) based nanomaterials, and carbon quantum dots (CQDs), to give a complete overview of various methods used in cancer theranostics. We also discussed their advantages and limitations in cancer diagnosis and treatment settings. Carbon nanomaterials might significantly improve cancer theranostics and pave the way for fresh tumor diagnosis and treatment approaches. More study is needed to determine whether using nano-carriers for targeted medicine delivery may increase material utilization. More insight is required to explore the correlation between heightened cytotoxicity and retention resulting from increased permeability.
Collapse
Affiliation(s)
| | - Danial Tahir
- Internal Medicine, Nazareth Hospital, Philadelphia, USA
| | - Muhammad Asim
- Internal Medicine, Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, GBR
| | | | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, Gujrat, PAK
| | - Dan Dan Xu
- Integrative Medicine, Shandong University of Traditional Chinese Medicine, Jinan, CHN
| |
Collapse
|
7
|
Pérez-Baños A, Gleisner MA, Flores I, Pereda C, Navarrete M, Araya JP, Navarro G, Quezada-Monrás C, Tittarelli A, Salazar-Onfray F. Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. Br J Cancer 2023; 129:572-585. [PMID: 37355722 PMCID: PMC10421921 DOI: 10.1038/s41416-023-02327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.
Collapse
Affiliation(s)
- Amarilis Pérez-Baños
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Araya
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Giovanna Navarro
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Claudia Quezada-Monrás
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile.
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute and Section for Infectious Diseases, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Najaflou M, Bani F, Khosroushahi AY. Immunotherapeutic effect of photothermal-mediated exosomes secreted from breast cancer cells. Nanomedicine (Lond) 2023; 18:1535-1552. [PMID: 37815086 DOI: 10.2217/nnm-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
Aim: Exosomal damage-associated molecular patterns can play a key role in immunostimulation and changing the cold tumor microenvironment to hot. Materials & methods: This study examined the immunostimulation effect of photothermal and hyperthermia-treated 4T1 cell-derived exosomes on 4T1 cell-induced breast tumors in BALB/c animal models. Exosomes were characterized for HSP70, HSP90 and HMGB-1 before injection into mice and tumor tissues were analyzed for IL-6, IL-12 and IL-1β, CD4 and CD8 T-cell permeability, and PD-L1 expression. Results: Thermal treatments increased high damage-associated molecular patterns containing exosome secretion and the permeability of T cells to tumors, leading to tumor growth inhibition. Conclusion: Photothermal-derived exosomes showed higher damage-associated molecular patterns than hyperthermia with a higher immunostimulation and inhibiting tumor growth effect.
Collapse
Affiliation(s)
- Meysam Najaflou
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| |
Collapse
|
9
|
Iannazzo D, Celesti C, Giofrè SV, Ettari R, Bitto A. Theranostic Applications of 2D Graphene-Based Materials for Solid Tumors Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2380. [PMID: 37630966 PMCID: PMC10459055 DOI: 10.3390/nano13162380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Solid tumors are a leading cause of cancer-related deaths globally, being characterized by rapid tumor growth and local and distant metastases. The failures encountered in cancer treatment are mainly related to the complicated biology of the tumor microenvironment. Nanoparticles-based (NPs) approaches have shown the potential to overcome the limitations caused by the pathophysiological features of solid cancers, enabling the development of multifunctional systems for cancer diagnosis and therapy and allowing effective inhibition of tumor growth. Among the different classes of NPs, 2D graphene-based nanomaterials (GBNs), due to their outstanding chemical and physical properties, easy surface multi-functionalization, near-infrared (NIR) light absorption and tunable biocompatibility, represent ideal nanoplatforms for the development of theranostic tools for the treatment of solid tumors. Here, we reviewed the most recent advances related to the synthesis of nano-systems based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), for the development of theranostic NPs to be used for photoacoustic imaging-guided photothermal-chemotherapy, photothermal (PTT) and photodynamic therapy (PDT), applied to solid tumors destruction. The advantages in using these nano-systems are here discussed for each class of GBNs, taking into consideration the different chemical properties and possibility of multi-functionalization, as well as biodistribution and toxicity aspects that represent a key challenge for their translation into clinical use.
Collapse
Affiliation(s)
- Daniela Iannazzo
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Consuelo Celesti
- Department of Engineering, University of Messina, 98166 Messina, Italy;
| | - Salvatore V. Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina, 98165 Messina, Italy; (S.V.G.); (R.E.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
10
|
Pelka S, Guha C. Enhancing Immunogenicity in Metastatic Melanoma: Adjuvant Therapies to Promote the Anti-Tumor Immune Response. Biomedicines 2023; 11:2245. [PMID: 37626741 PMCID: PMC10452223 DOI: 10.3390/biomedicines11082245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Advanced melanoma is an aggressive form of skin cancer characterized by low survival rates. Less than 50% of advanced melanoma patients respond to current therapies, and of those patients that do respond, many present with tumor recurrence due to resistance. The immunosuppressive tumor-immune microenvironment (TIME) remains a major obstacle in melanoma therapy. Adjuvant treatment modalities that enhance anti-tumor immune cell function are associated with improved patient response. One potential mechanism to stimulate the anti-tumor immune response is by inducing immunogenic cell death (ICD) in tumors. ICD leads to the release of damage-associated molecular patterns within the TIME, subsequently promoting antigen presentation and anti-tumor immunity. This review summarizes relevant concepts and mechanisms underlying ICD and introduces the potential of non-ablative low-intensity focused ultrasound (LOFU) as an immune-priming therapy that can be combined with ICD-inducing focal ablative therapies to promote an anti-melanoma immune response.
Collapse
Affiliation(s)
- Sandra Pelka
- Department of Development and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute of Onco-Physics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Salazar A, Chavarria V, Flores I, Ruiz S, Pérez de la Cruz V, Sánchez-García FJ, Pineda B. Abscopal Effect, Extracellular Vesicles and Their Immunotherapeutic Potential in Cancer Treatment. Molecules 2023; 28:molecules28093816. [PMID: 37175226 PMCID: PMC10180522 DOI: 10.3390/molecules28093816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The communication between tumor cells and the microenvironment plays a fundamental role in the development, growth and further immune escape of the tumor. This communication is partially regulated by extracellular vesicles which can direct the behavior of surrounding cells. In recent years, it has been proposed that this feature could be applied as a potential treatment against cancer, since several studies have shown that tumors treated with radiotherapy can elicit a strong enough immune response to eliminate distant metastasis; this phenomenon is called the abscopal effect. The mechanism behind this effect may include the release of extracellular vesicles loaded with damage-associated molecular patterns and tumor-derived antigens which activates an antigen-specific immune response. This review will focus on the recent discoveries in cancer cell communications via extracellular vesicles and their implication in tumor development, as well as their potential use as an immunotherapeutic treatment against cancer.
Collapse
Affiliation(s)
- Aleli Salazar
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Víctor Chavarria
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
- Immunoregulation Lab, Department of Immunology, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Itamar Flores
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Samanta Ruiz
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| | | | - Benjamin Pineda
- Neuroimmunology and Neuro-Oncology Unit, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City 14269, Mexico
| |
Collapse
|
12
|
Miao Y, Wang S, Zhang B, Liu L. Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages. Front Immunol 2023; 14:1133238. [PMID: 37205099 PMCID: PMC10186348 DOI: 10.3389/fimmu.2023.1133238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/05/2023] [Indexed: 05/21/2023] Open
Abstract
The tumor microenvironment (TME) is the internal environment that tumors depend on for survival and development. Tumor-associated macrophages (TAMs), as an important part of the tumor microenvironment, which plays a crucial role in the occurrence, development, invasion and metastasis of various malignant tumors and has immunosuppressant ability. With the development of immunotherapy, eradicating cancer cells by activating the innate immune system has yielded encouraging results, however only a minority of patients show a lasting response. Therefore, in vivo imaging of dynamic TAMs is crucial in patient-tailored immunotherapy to identify patients who will benefit from immunotherapy, monitor efficacy after treatment, and identify alternative strategies for non-responders. Meanwhile, developing nanomedicines based on TAMs-related antitumor mechanisms to effectively inhibit tumor growth is expected to become a promising research field. Carbon dots (CDs), as an emerging member of the carbon material family, exhibit unexpected superiority in fluorescence imaging/sensing, such as near infrared imaging, photostability, biocompatibility and low toxicity. Their characteristics naturally integrate therapy and diagnosis, and when CDs are combined with targeted chemical/genetic/photodynamic/photothermal therapeutic moieties, they are good candidates for targeting TAMs. We concentrate our discussion on the current learn of TAMs and describe recent examples of macrophage modulation based on carbon dot-associated nanoparticles, emphasizing the advantages of their multifunctional platform and their potential for TAMs theranostics.
Collapse
Affiliation(s)
| | | | | | - Lin Liu
- *Correspondence: Butian Zhang, ; Lin Liu,
| |
Collapse
|
13
|
Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics. Cancers (Basel) 2022; 15:cancers15010082. [PMID: 36612080 PMCID: PMC9817790 DOI: 10.3390/cancers15010082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) within and around a tumor is a complex interacting mixture of tumor cells with various stromal cells, including endothelial cells, fibroblasts, and immune cells. In the early steps of tumor formation, the local microenvironment tends to oppose carcinogenesis, while with cancer progression, the microenvironment skews into a protumoral TME and the tumor influences stromal cells to provide tumor-supporting functions. The creation and development of cancer are dependent on escape from immune recognition predominantly by influencing stromal cells, particularly immune cells, to suppress antitumor immunity. This overall process is generally called immunoediting and has been categorized into three phases; elimination, equilibrium, and escape. Interaction of tumor cells with stromal cells in the TME is mediated generally by cell-to-cell contact, cytokines, growth factors, and extracellular vesicles (EVs). The least well studied are EVs (especially exosomes), which are nanoparticle-sized bilayer membrane vesicles released by many cell types that participate in cell/cell communication. EVs carry various proteins, nucleic acids, lipids, and small molecules that influence cells that ingest the EVs. Tumor-derived extracellular vesicles (TEVs) play a significant role in every stage of immunoediting, and their cargoes change from immune-activating in the early stages of immunoediting into immunosuppressing in the escape phase. In addition, their cargos change with different treatments or stress conditions and can be influenced to be more immune stimulatory against cancer. This review focuses on the emerging understanding of how TEVs affect the differentiation and effector functions of stromal cells and their role in immunoediting, from the early stages of immunoediting to immune escape. Consideration of how TEVs can be therapeutically utilized includes different treatments that can modify TEV to support cancer immunotherapy.
Collapse
|
14
|
Xie D, Wang Q, Wu G. Research progress in inducing immunogenic cell death of tumor cells. Front Immunol 2022; 13:1017400. [PMID: 36466838 PMCID: PMC9712455 DOI: 10.3389/fimmu.2022.1017400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Immunogenic cell death (ICD) is a regulated cell death (RCD) pathway. In response to physical and chemical signals, tumor cells activate specific signaling pathways that stimulate stress responses in the endoplasmic reticulum (ER) and expose damage-associated molecular patterns (DAMPs), which promote antitumor immune responses. As a result, the tumor microenvironment is altered, and many tumor cells are killed. The ICD response in tumor cells requires inducers. These inducers can be from different sources and contribute to the development of the ICD either indirectly or directly. The combination of ICD inducers with other tumor treatments further enhances the immune response in tumor cells, and more tumor cells are killed; however, it also produces side effects of varying severity. New induction methods based on nanotechnology improve the antitumor ability and significantly reduces side effects because they can target tumor cells precisely. In this review, we introduce the characteristics and mechanisms of ICD responses in tumor cells and the DAMPs associated with ICD responses, summarize the current methods of inducing ICD response in tumor cells in five distinct categories: chemical sources, physical sources, pathogenic sources, combination therapies, and innovative therapies. At the same time, we introduce the limitations of current ICD inducers and make a summary of the use of ICD responses in clinical trials. Finally, we provide an outlook on the future of ICD inducer development and provide some constructive suggestions.
Collapse
Affiliation(s)
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
15
|
Role of HMGB1 in Cutaneous Melanoma: State of the Art. Int J Mol Sci 2022; 23:ijms23169327. [PMID: 36012593 PMCID: PMC9409290 DOI: 10.3390/ijms23169327] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
High-mobility Group Box 1 (HMGB1) is a nuclear protein that plays a key role in acute and chronic inflammation. It has already been studied in several diseases, among them melanoma. Indeed, HMGB1 is closely associated with cell survival and proliferation and may be directly involved in tumor cell metastasis development thanks to its ability to promote cell migration. This research aims to assess the role of this molecule in the pathogenesis of human melanoma and its potential therapeutic role. The research has been conducted on the PubMed database, and the resulting articles are sorted by year of publication, showing an increasing interest in the last five years. The results showed that HMGB1 plays a crucial role in the pathogenesis of skin cancer, prognosis, and therapeutical response to therapy. Traditional therapies target this molecule indirectly, but future perspectives could include the development of new target therapy against HMGB1, thus adding a new approach to the therapy, which has often shown primary and secondary resistance. This could add a new therapy arm which has to be prolonged and specific for each patient.
Collapse
|
16
|
Anticancer and Anti-Inflammatory Mechanisms of NOSH-Aspirin and Its Biological Effects. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4463294. [PMID: 36035295 PMCID: PMC9402325 DOI: 10.1155/2022/4463294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
NOSH-Aspirin, which is generated from NO, H2S, and aspirin, affects a variety of essential pathophysiological processes, including anti-inflammatory, analgesic, antipyretic, antiplatelet, and anticancer properties. Although many people acknowledge the biological significance of NOSH-Aspirin and its therapeutic effects, the mechanism of action of NOSH-Aspirin and its regulation of tissue levels remains obscure. This is in part due to its chemical and physical features, which make processing and analysis difficult. This review focuses on the biological effects of NOSH-Aspirin and provides a comprehensive analysis to elucidate the mechanism underlying its disease-protective benefits.
Collapse
|
17
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|