1
|
Guo Y, Jian J, Tang X, Zhao L, Liu B. Comprehensive analysis of DNA methylation and gene expression to identify tumor suppressor genes reactivated by MLN4924 in acute myeloid leukemia. Anticancer Drugs 2025; 36:199-207. [PMID: 39786970 DOI: 10.1097/cad.0000000000001688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This study investigated whether the neddylation inhibitor MLN4924 induces aberrant DNA methylation patterns in acute myeloid leukemia and contributes to the reactivation of tumor suppressor genes. DNA methylation profiles of Kasumi-1 and KU812 acute myeloid leukemia cell lines before and after MLN4924 treatment were generated using the 850K Methylation BeadChip. RNA sequencing was used to obtain transcriptomic profiles of Kasumi-1 cells. Target genes were identified through a combined analysis of methylation and transcriptome data. Methylation-specific PCR and quantitative PCR validated the changes in methylation and expression. Prognostic analysis of target genes was performed using databases, and Pearson correlation was used to examine the relationship between methylation and expression levels. In Kasumi-1 and KU812 cells, 301 and 469 differentially methylated sites, respectively, were identified. A total of 4310 differential expression genes were detected in Kasumi-1. Combined analysis revealed that TRIM58 exhibited significant demethylation and upregulation after MLN4924 treatment, as confirmed by quantitative and methylation-specific PCR. Furthermore, database analysis revealed that both down-expression and promoter hypermethylation of TRIM58 were correlated with poor prognosis in acute myeloid leukemia. A negative correlation was observed between TRIM58 methylation and expression levels. This study suggests that MLN4924 alters DNA methylation patterns in acute myeloid leukemia and reactivates TRIM58, a potential tumor suppressor gene, through demethylation.
Collapse
Affiliation(s)
- Yuancheng Guo
- The First Clinical Medical School, Lanzhou University
| | - Jinli Jian
- The First Clinical Medical School, Lanzhou University
| | - Xiao Tang
- The First Clinical Medical School, Lanzhou University
| | - Long Zhao
- The First Clinical Medical School, Lanzhou University
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical School, Lanzhou University
- Department of Hematology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Oe S, Kakizaki R, Sakamoto S, Sato T, Hayashi M, Isozaki H, Nonaka M, Iwashita H, Hayashi S, Koike T, Seki-Omura R, Nakano Y, Sato Y, Hirahara Y, Kitada M. MicroRNA-505-5p/-3p Regulates the Proliferation, Invasion, Apoptosis, and Temozolomide Resistance in Mesenchymal Glioma Stem Cells by Targeting AUF1. Mol Carcinog 2025; 64:279-289. [PMID: 39513659 DOI: 10.1002/mc.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Mesenchymal glioma stem cells (MES-GSCs) are a major subtype of GSCs that reside within glioma tissues and contribute to metastasis, therapy resistance, and glioma recurrence. However, the precise molecular mechanisms governing MES-GSC functions remain elusive. Our findings revealed that expression levels of miR-505-5p/-3p are elevated in MES-GSCs compared with those in proneural (PN)-GSCs, glioma cell lines, and normal brain tissue and that miR-505-5p/-3p expression levels are decreased in differentiated MES-GSCs. We assumed that miR-505-5p/-3p would play distinctive roles in MES-GSCs and performed loss-of-function experiments targeting miR-505-5p/-3p. Knockdown of miR-505-5p/-3p increased proliferation and promoted differentiation in MES-GSCs while suppressing invasion, temozolomide resistance, and enhancing apoptosis in MES-GSCs. Mechanistically, miR-505-5p/-3p directly targets the 3' UTR of AUF1, leading to its repression in MES-GSCs. Notably, AUF1 expression levels were significantly lower in MES-GSCs compared with those in PN-GSCs, glioma cell lines, and normal brain tissues. Co-inhibition of AUF1 expression with miR-505-5p/-3p knockdown ameliorated the observed cellular phenotypes caused by miR-505-5p/-3p knockdown in MES-GSCs. These results suggest that miR-505-5p/-3p exerts MES-GSC-specific roles in regulating proliferation, differentiation, invasion, apoptosis, and temozolomide resistance by repressing AUF1 expression.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Teruhide Sato
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Mikio Hayashi
- Department of Physiology, Institute of Biomedical Science, Kansai Medical University, Osaka, Hirakata, Japan
| | - Haruna Isozaki
- Department of Neurosurgery, Kansai Medical University, Osaka, Hirakata, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, Osaka, Hirakata, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Ryohei Seki-Omura
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yousuke Nakano
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yuki Sato
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
- Faculty of Nursing, Kansai Medical University, Osaka, Hirakata, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| |
Collapse
|
3
|
Song J, Ke B, Fang X. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5674711. [PMID: 39328595 PMCID: PMC11424844 DOI: 10.1155/2024/5674711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in uremic patients and to seek new strategies to slow down the progression of renal fibrosis. Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes (DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2 macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of candidate genes obtained from uremic patients in M2 macrophage. Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20 biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation, M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular, adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages from uremic patients than those in healthy individuals. Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
Collapse
Affiliation(s)
- Jianling Song
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Ben Ke
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Xiangdong Fang
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
4
|
Zheng YZ, Li JY, Ning LW, Xie N. Predictive and Prognostic Value of TRIM58 Protein Expression in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:475-487. [PMID: 36578908 PMCID: PMC9790805 DOI: 10.2147/bctt.s387209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Introduction Tripartite motif-containing protein (TRIM) family members play crucial roles in carcinogenesis and chemotherapy resistance. In this study, we aimed to determine whether TRIM58 protein expression is related to patient responses to neoadjuvant therapy (NAT) and their survival outcome. Methods Immunohistochemistry was performed on female breast cancer samples from biopsies before NAT in Shenzhen Second People's Hospital. Univariate and multivariate logistic regression tests were used to analyze the association between TRIM58 protein expression and pathological complete response (pCR). The Cox proportional hazards model was used to calculate the adjusted hazard ratio (HR) with a 95% confidence interval (95% CI). The Kaplan-Meier plotter database was used to analyze the prognostic value of TRIM58. Results High TRIM58 expression was associated with small tumor size in all the patients (n = 58). Multivariate analysis suggested that low TRIM58 expression was an independent predictive factor for higher pCR (odds ratio = 0.06, 95% CI 0.005-0.741, P = 0.028). The Kaplan-Meier Plotter dataset suggested that the TRIM58 high-expression group showed a worse 5-year overall survival than the low-expression group (HR = 1.34, 95% CI 1.07-1.67, P = 0.01). Pathway analysis revealed the potential mechanisms of TRIM58 in chemoresistance. Discussion Our study suggests that TRIM58 is a promising biomarker for both neoadjuvant chemosensitivity and long-term clinical outcomes in breast cancer. It may also help to identify candidate responders and determine treatment strategies.
Collapse
Affiliation(s)
- Yi-Zi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Breast Tumor Research Center for Diagnosis and Treatment, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jia-Ying Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China,Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Lv-Wen Ning
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Ni Xie
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China,Correspondence: Ni Xie, Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, 3002 Sungang West Road, Shenzhen, 518035, Guangdong, People’s Republic of China, Tel +86-13501580802, Fax +86-0755-83003435, Email
| |
Collapse
|
5
|
The lncRNA THOR interacts with and stabilizes hnRNPD to promote cell proliferation and metastasis in breast cancer. Oncogene 2022; 41:5298-5314. [PMID: 36329124 DOI: 10.1038/s41388-022-02495-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Emerging evidence shows that the lncRNA THOR is deeply involved in the development of various cancers. However, the effects and underlying molecular mechanisms of THOR in breast cancer (BRCA) initiation and progression have not been fully elucidated. Here we show that THOR is critical for BRCA tumorigenesis by interacting with hnRNPD to regulate downstream signaling pathways. THOR expression was significantly higher in BRCA tissues than in normal tissues, and THOR upregulation was associated with a poor prognosis in BRCA patients. Functionally, THOR knockdown impaired cell proliferation, migration and invasion in BRCA cells in vitro and inhibited tumorigenesis and metastasis in a tumor xenograft model and THOR-deficient MMTV-PyMT model in vivo. Mechanistically, THOR bound to the hnRNPD protein and increased hnRNPD protein levels by maintaining hnRNPD protein stability through inhibition of the proteasome-dependent degradation pathway. The increased hnRNPD protein levels led to stabilization of its target mRNAs, including pyruvate dehydrogenase kinase 1 (PDK1), further activating downstream PI3K-AKT and MAPK signaling pathways to regulate BRCA cell proliferation and metastasis. Together, our findings indicate that THOR is a promising prognostic predictor for BRCA patients and that the THOR-hnRNPD-PDK1-MAPK/PI3K-AKT axis might be a potential therapeutic target for BRCA treatment.
Collapse
|
6
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
7
|
Mitra S, Sarker J, Mojumder A, Shibbir TB, Das R, Emran TB, Tallei TE, Nainu F, Alshahrani AM, Chidambaram K, Simal-Gandara J. Genome editing and cancer: How far has research moved forward on CRISPR/Cas9? Biomed Pharmacother 2022; 150:113011. [PMID: 35483191 DOI: 10.1016/j.biopha.2022.113011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer accounted for almost ten million deaths worldwide in 2020. Metastasis, characterized by cancer cell invasion to other parts of the body, is the main cause of cancer morbidity and mortality. Therefore, understanding the molecular mechanisms of tumor formation and discovery of potential drug targets are of great importance. Gene editing techniques can be used to find novel drug targets and study molecular mechanisms. In this review, we describe how popular gene-editing methods such as CRISPR/Cas9, TALEN and ZFNs work, and, by comparing them, we demonstrate that CRISPR/Cas9 has superior efficiency and precision. We further provide an overview of the recent applications of CRISPR/Cas9 to cancer research, focusing on the most common cancers such as breast cancer, lung cancer, colorectal cancer, and prostate cancer. We describe how these applications will shape future research and treatment of cancer, and propose new ways to overcome current challenges.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Joyatry Sarker
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tasmim Bintae Shibbir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
8
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|