1
|
von Tresckow B, Abrisqueta P, Zamanillo I, Pareja ÁS, Kuang Y, Uyei J, Shah M, Walsh L, Thorley E, Cantos K, Rashidi E, Hampp C, Jalbert JJ, Archambault AN, Xu Y, Aggarwal S, Ambati S, Mohamed H, Ma Q, Jiménez-Ubieto A. Prognostic Factors and Effect Modifiers in Patients With Relapse or Refractory Diffuse Large B-Cell Lymphoma After Two Lines of Therapy: A Systematic Literature and Expert Clinical Review. Eur J Haematol 2025. [PMID: 40344463 DOI: 10.1111/ejh.14423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/11/2025]
Abstract
OBJECTIVES The objective of this systematic literature review (SLR) combined with expert clinical review was to identify and rank prognostic factors and effect measure modifiers (EMMs) systematically and comprehensively in patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who initiate treatment after ≥ 2 prior lines of therapy (LoTs; 3L+ R/R DLBCL). METHODS We performed an SLR of studies published between 2016 and 2021 and extracted study characteristics, prognostic factors, and EMMs. This was followed by clinical review and ranking of findings by subject matter experts using questionnaires, follow-up interviews, and quantitative ranking. RESULTS Across 46 included studies, the SLR identified 36 prognostic factors significantly associated with ≥ 1 clinical outcome. Based on subject matter expert ranking of the SLR-derived list, the five most important prognostic variables in descending order are: early chemo-immunotherapy failure, Eastern Cooperative Oncology Group performance status, refractory to last LoT, number of prior LoTs, and double- or triple-hit lymphoma. CONCLUSIONS This SLR and expert clinical review is the first to provide a comprehensive assessment of prognostic factors for 3L+ R/R DLBCL. No statistically significant EMMs were identified. This robust multi-method approach can assist in selecting prognostic variables for comparative analyses between real-world studies and clinical trials.
Collapse
Affiliation(s)
- Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK Partner Site Essen), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Pau Abrisqueta
- Department of Hematology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Irene Zamanillo
- Hematology Department, University Hospital 12 de Octubre, Madrid, Spain
| | - Ángel Serna Pareja
- Department of Hematology, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | - Yingxin Xu
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | | | - Hesham Mohamed
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Qiufei Ma
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | |
Collapse
|
2
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Capolla S, Argenziano M, Bozzer S, D’Agaro T, Bittolo T, De Leo L, Not T, Busato D, Dal Bo M, Toffoli G, Cavalli R, Gattei V, Bomben R, Macor P. Targeted chitosan nanobubbles as a strategy to down-regulate microRNA-17 into B-cell lymphoma models. Front Immunol 2023; 14:1200310. [PMID: 37359561 PMCID: PMC10285521 DOI: 10.3389/fimmu.2023.1200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction MicroRNAs represent interesting targets for new therapies because their altered expression influences tumor development and progression. miR-17 is a prototype of onco-miRNA, known to be overexpressed in B-cell non-Hodgkin lymphoma (B-NHL) with peculiar clinic-biological features. AntagomiR molecules have been largely studied to repress the regulatory functions of up-regulated onco-miRNAs, but their clinical use is mainly limited by their rapid degradation, kidney elimination and poor cellular uptake when injected as naked oligonucleotides. Methods To overcome these problems, we exploited CD20 targeted chitosan nanobubbles (NBs) for a preferential and safe delivery of antagomiR17 to B-NHL cells. Results Positively charged 400 nm-sized nanobubbles (NBs) represent a stable and effective nanoplatform for antagomiR encapsulation and specific release into B-NHL cells. NBs rapidly accumulated in tumor microenvironment, but only those conjugated with a targeting system (antiCD20 antibodies) were internalized into B-NHL cells, releasing antagomiR17 in the cytoplasm, both in vitro and in vivo. The result is the down-regulation of miR-17 level and the reduction in tumor burden in a human-mouse B-NHL model, without any documented side effects. Discussion Anti-CD20 targeted NBs investigated in this study showed physico-chemical and stability properties suitable for antagomiR17 delivery in vivo and represent a useful nanoplatform to address B-cell malignancies or other cancers through the modification of their surface with specific targeting antibodies.
Collapse
Affiliation(s)
- Sara Capolla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Sara Bozzer
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Tiziana D’Agaro
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Luigina De Leo
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Tarcisio Not
- Department of Pediatrics, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Davide Busato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO)-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
4
|
Varma G, Goldstein J, Advani RH. Novel agents in relapsed/refractory diffuse large B-cell lymphoma. Hematol Oncol 2023; 41 Suppl 1:92-106. [PMID: 37294966 DOI: 10.1002/hon.3143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), ineligible for or relapsing after autologous stem-cell transplant or chimeric antigen-receptor T-cell therapies have poor outcomes. Several novel agents, polatuzumab vedotin, tafasitamab, loncastuximab tesirine, and selinexor, have been approved and offer new opportunities for this difficult to treat population. Studies are evaluating combination of these agents with chemotherapy and other emerging therapies. Additionally, advances in our understanding of DLBCL biology, genetics, and immune microenvironment have allowed for the identification of new therapeutic targets like Ikaros and Aiolos, IRAK4, MALT1, and CD47 with several agents in ongoing clinical trials. In this chapter we review updated data supporting the use of the approved agents and discuss other emerging novel therapies for patients with R/R DLBCL.
Collapse
Affiliation(s)
- Gaurav Varma
- Division of Hematology and Medical Oncology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Jordan Goldstein
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA
| | - Ranjana H Advani
- Department of Medicine, Division of Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Martin S, Viertl D, Janz A, Habringer S, Keller U, Schottelius M. Influence of corticosteroid treatment on CXCR4 expression in DLBCL. EJNMMI Res 2023; 13:40. [PMID: 37162652 PMCID: PMC10172459 DOI: 10.1186/s13550-023-00993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND CXCR4-targeted radioligand therapy (RLT) with [177Lu]Lu/[90Y]Y-PentixaTher has recently evolved as a promising therapeutic option for patients with advanced hematological cancers. Given their advanced disease stage, most patients scheduled for PentixaTher RLT require concomitant or bridging chemotherapy to prevent intermittent tumor progression. These (mostly combination) therapies may cause significant downregulation of tumoral CXCR4 expression, challenging the applicability of PentixaTher RLT. This study therefore aimed at investigating the influence of corticosteroids, a central component of these chemotherapies, on CXCR4 regulation in diffuse large B cell lymphoma (DLBCL). METHODS Different DLBCL cell lines (Daudi, OCI-LY1, SUDHL-4, -5-, -6 and -8) as well as the human T-cell lymphoma cell line Jurkat were incubated with Dexamethasone (Dex; 0.5 and 5 µM, respectively) and Prednisolone (Pred; 5 and 50 µM, respectively) for different time points (2 h, 24 h). Treatment-induced modulation of cellular CXCR4 surface expression was assessed via flow cytometry (FC) and compared to untreated cells. A radioligand binding assay with [125I]CPCR4.3 was performed in parallel using the same cells. To quantify potential corticosteroid treatment effects on tumoral CXCR4 expression in vivo, OCI-LY1 bearing NSG mice were injected 50 µg Dex/mouse i.p. (daily for 6 days). Then, a biodistribution study (1 h p.i.) using [68Ga]PentixaTher was performed, and tracer biodistribution in treated (n = 5) vs untreated mice (n = 5) was compared. RESULTS In the in vitro experiments, a strongly cell line-dependent upregulation of CXCR4 was observed for both Dex and Pred treatment, with negligible differences between the high and low dose. While in Jurkat, Daudi and SUDHL-8 cells, CXCR4 expression remained unchanged, a 1.5- to 3.5-fold increase in CXCR4 cell surface expression was observed for SUDHL-5 < SUDHL-4 /-6 < OCI-LY1 via FC compared to untreated cells. This increase in CXCR4 expression was also reflected in correspondingly enhanced [125I]CPCR4.3 accumulation in treated cells, with a linear correlation between FC and radioligand binding data. In vivo, Dex treatment led to a general increase of [68Ga]PentixaTher uptake in all organs compared to untreated animals, as a result of a higher tracer concentration in blood. However, we observed an overproportionally enhanced [68Ga]PentixaTher uptake in the OCI-LY1 tumors in treated (21.0 ± 5.5%iD/g) vs untreated (9.2 ± 2.8%iD/g) mice, resulting in higher tumor-to-background ratios in the treatment group. CONCLUSION Overall, corticosteroid treatment (Dex/Pred) consistently induced an upregulation of CXCR4 expression DBLCL cells in vitro, albeit in a very cell line-dependent manner. For the cell line with the most pronounced Dex-induced CXCR4 upregulation, OCI-LY1, the in vitro findings were corroborated by an in vivo biodistribution study. This confirms that at least the corticosteroid component of stabilizing chemotherapy regimens in DLBCL patients prior to [177Lu]Lu-PentixaTher RLT does not lead to downregulation of the molecular target CXCR4 and may even have a beneficiary effect. However, further studies are needed to investigate if and to what extent the other commonly used chemotherapeutic agents affect CXCR4 expression on DLBCL to ensure the choice of an appropriate treatment regimen prior to [177Lu]Lu/[90Y]Y-PentixaTher RLT.
Collapse
Affiliation(s)
- Sebastian Martin
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland
| | - David Viertl
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland
| | - Anna Janz
- PentixaPharm GmbH, 97080, Würzburg, Germany
| | - Stefan Habringer
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max Delbrück Center (MDC), 13092, Berlin, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Max Delbrück Center (MDC), 13092, Berlin, Germany
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, CH-1011, Lausanne, Switzerland.
- AGORA, Pôle de Recherche Sur Le Cancer, 1011, Lausanne, Switzerland.
- SCCL Swiss Cancer Center Leman, 1011, Lausanne, Switzerland.
| |
Collapse
|
6
|
Targeting DNA Methylation in Leukemia, Myelodysplastic Syndrome, and Lymphoma: A Potential Diagnostic, Prognostic, and Therapeutic Tool. Int J Mol Sci 2022; 24:ijms24010633. [PMID: 36614080 PMCID: PMC9820560 DOI: 10.3390/ijms24010633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
DNA methylation represents a crucial mechanism of epigenetic regulation in hematologic malignancies. The methylation process is controlled by specific DNA methyl transferases and other regulators, which are often affected by genetic alterations. Global hypomethylation and hypermethylation of tumor suppressor genes are associated with hematologic cancer development and progression. Several epi-drugs have been successfully implicated in the treatment of hematologic malignancies, including the hypomethylating agents (HMAs) decitabine and azacytidine. However, combinations with other treatment modalities and the discovery of new molecules are still the subject of research to increase sensitivity to anti-cancer therapies and improve patient outcomes. In this review, we summarized the main functions of DNA methylation regulators and genetic events leading to changes in methylation landscapes. We provide current knowledge about target genes with aberrant methylation levels in leukemias, myelodysplastic syndromes, and malignant lymphomas. Moreover, we provide an overview of the clinical trials, focused mainly on the combined therapy of HMAs with other treatments and its impact on adverse events, treatment efficacy, and survival rates among hematologic cancer patients. In the era of precision medicine, a transition from genes to their regulation opens up the possibility of an epigenetic-based approach as a diagnostic, prognostic, and therapeutic tool.
Collapse
|
7
|
Tsvetkova D, Ivanova S. Application of Approved Cisplatin Derivatives in Combination Therapy against Different Cancer Diseases. Molecules 2022; 27:2466. [PMID: 35458666 PMCID: PMC9031877 DOI: 10.3390/molecules27082466] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/03/2023] Open
Abstract
The problems with anticancer therapy are resistance and toxicity. From 3000 Cisplatin derivatives tested as antitumor agents, most of them have been rejected, due to toxicity. The aim of current study is the comparison of therapeutic combinations of the currently applied in clinical practice: Cisplatin, Carboplatin, Oxaliplatin, Nedaplatin, Lobaplatin, Heptaplatin, and Satraplatin. The literature data show that the strategies for the development of platinum anticancer agents and bypassing of resistance to Cisplatin derivatives and their toxicity are: combination therapy, Pt IV prodrugs, the targeted nanocarriers. The very important strategy for the improvement of the antitumor effect against different cancers is synergistic combination of Cisplatin derivatives with: (1) anticancer agents-Fluorouracil, Gemcitabine, Cytarabine, Fludarabine, Pemetrexed, Ifosfamide, Irinotecan, Topotecan, Etoposide, Amrubicin, Doxorubicin, Epirubicin, Vinorelbine, Docetaxel, Paclitaxel, Nab-Paclitaxel; (2) modulators of resistant mechanisms; (3) signaling protein inhibitors-Erlotinib; Bortezomib; Everolimus; (4) and immunotherapeutic drugs-Atezolizumab, Avelumab, Bevacizumab, Cemiplimab, Cetuximab, Durvalumab, Erlotinib, Imatinib, Necitumumab, Nimotuzumab, Nivolumab, Onartuzumab, Panitumumab, Pembrolizumab, Rilotumumab, Trastuzumab, Tremelimumab, and Sintilimab. An important approach for overcoming the drug resistance and reduction of toxicity of Cisplatin derivatives is the application of nanocarriers (polymers and liposomes), which provide improved targeted delivery, increased intracellular penetration, selective accumulation in tumor tissue, and enhanced therapeutic efficacy. The advantages of combination therapy are maximum removal of tumor cells in different phases; prevention of resistance; inhibition of the adaptation of tumor cells and their mutations; and reduction of toxicity.
Collapse
Affiliation(s)
- Dobrina Tsvetkova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Sofia, Dunav Str. 2, 1000 Sofia, Bulgaria
| | - Stefka Ivanova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Medical University-Pleven, Kliment Ohridski Str. 1, 5800 Pleven, Bulgaria;
| |
Collapse
|
8
|
Liu J, Li JN, Wu H, Liu P. The Status and Prospects of Epigenetics in the Treatment of Lymphoma. Front Oncol 2022; 12:874645. [PMID: 35463343 PMCID: PMC9033274 DOI: 10.3389/fonc.2022.874645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The regulation of gene transcription by epigenetic modifications is closely related to many important life processes and is a hot research topic in the post-genomic era. Since the emergence of international epigenetic research in the 1990s, scientists have identified a variety of chromatin-modifying enzymes and recognition factors, and have systematically investigated their three-dimensional structures, substrate specificity, and mechanisms of enzyme activity regulation. Studies of the human tumor genome have revealed the close association of epigenetic factors with various malignancies, and we have focused more on mutations in epigenetically related regulatory enzymes and regulatory recognition factors in lymphomas. A number of studies have shown that epigenetic alterations are indeed widespread in the development and progression of lymphoma and understanding these mechanisms can help guide clinical efforts. In contrast to chemotherapy which induces cytotoxicity, epigenetic therapy has the potential to affect multiple cellular processes simultaneously, by reprogramming cells to achieve a therapeutic effect in lymphoma. Epigenetic monotherapy has shown promising results in previous clinical trials, and several epigenetic agents have been approved for use in the treatment of lymphoma. In addition, epigenetic therapies in combination with chemotherapy and/or immunotherapy have been used in various clinical trials. In this review, we present several important epigenetic modalities of regulation associated with lymphoma, summarize the corresponding epigenetic drugs in lymphoma, and look at the future of epigenetic therapies in lymphoma.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia-Nan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|