1
|
Tummala H, Walne AJ, Badat M, Patel M, Walne AM, Alnajar J, Chow CC, Albursan I, Frost JM, Ballard D, Killick S, Szitányi P, Kelly AM, Raghavan M, Powell C, Raymakers R, Todd T, Mantadakis E, Polychronopoulou S, Pontikos N, Liao T, Madapura P, Hossain U, Vulliamy T, Dokal I. The evolving genetic landscape of telomere biology disorder dyskeratosis congenita. EMBO Mol Med 2024; 16:2560-2582. [PMID: 39198715 PMCID: PMC11473520 DOI: 10.1038/s44321-024-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Dyskeratosis congenita (DC) is a rare inherited bone marrow failure syndrome, caused by genetic mutations that principally affect telomere biology. Approximately 35% of cases remain uncharacterised at the genetic level. To explore the genetic landscape, we conducted genetic studies on a large collection of clinically diagnosed cases of DC as well as cases exhibiting features resembling DC, referred to as 'DC-like' (DCL). This led us to identify several novel pathogenic variants within known genetic loci and in the novel X-linked gene, POLA1. In addition, we have also identified several novel variants in POT1 and ZCCHC8 in multiple cases from different families expanding the allelic series of DC and DCL phenotypes. Functional characterisation of novel POLA1 and POT1 variants, revealed pathogenic effects on protein-protein interactions with primase, CTC1-STN1-TEN1 (CST) and shelterin subunit complexes, that are critical for telomere maintenance. ZCCHC8 variants demonstrated ZCCHC8 deficiency and signs of pervasive transcription, triggering inflammation in patients' blood. In conclusion, our studies expand the current genetic architecture and broaden our understanding of disease mechanisms underlying DC and DCL disorders.
Collapse
Affiliation(s)
- Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK.
- Barts Health NHS Trust, London, UK.
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Mohsin Badat
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Manthan Patel
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Abigail M Walne
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Chi Ching Chow
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Ibtehal Albursan
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Jennifer M Frost
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - David Ballard
- Department of Analytical, Environmental & Forensic Sciences, Kings College London, Franklin-Wilkins Building, Stamford Street, London, SE1 9NH, UK
| | - Sally Killick
- Department of Haematology, Royal Bournemouth Hospital NHS Foundation Trust, Bournemouth, BH7 7DW, UK
| | - Peter Szitányi
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 128 08 Praha 2, Prague, Czech Republic
| | - Anne M Kelly
- Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Manoj Raghavan
- Clinical Haematology, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | - Corrina Powell
- Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Reinier Raymakers
- University Medical Center Utrecht, 3508 GA, Utrecht, The Netherlands
| | - Tony Todd
- Department of Haematology, Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - Elpis Mantadakis
- Department of Pediatrics' University General Hospital of Alexandroupolis, Democritus University of Thrace Faculty of Medicine, 6th Kilometer Alexandroupolis-Makris, 68 100 Alexandroupolis, Thrace, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology-Oncology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tianyi Liao
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Pradeep Madapura
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Upal Hossain
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Newark Street, London, E12AT, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Hu Y, Mu H, Deng Z. RBM14 as a novel epigenetic-activated tumor oncogene is implicated in the reprogramming of glycolysis in lung cancer. World J Surg Oncol 2023; 21:132. [PMID: 37060064 PMCID: PMC10105460 DOI: 10.1186/s12957-023-02928-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/05/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND RNA-binding motif protein 14 (RBM14) is upregulated in a variety of tumors. However, the expression and biological role of RBM14 in lung cancer remain unclear. METHODS Chromatin immunoprecipitation and PCR were carried out to measure the levels of sedimentary YY1, EP300, H3K9ac, and H3K27ac in the RBM14 promoter. Co-immunoprecipitation was used to verify the interaction between YY1 and EP300. Glycolysis was investigated according to glucose consumption, lactate production, and the extracellular acidification rate (ECAR). RESULTS RBM14 level is increased in lung adenocarcinoma (LUAD) cells. The increased RBM14 expression was correlated with TP53 mutation and individual cancer stages. A high level of RBM14 predicted a poorer overall survival of LUAD patients. The upregulated RBM14 in LUAD is induced by DNA methylation and histone acetylation. The transcription factor YY1 directly binds to EP300 and recruits EP300 to the promoter regions of RBM14, which further enhances H3K27 acetylation and promotes RBM14 expression. YY1-induced upregulation of RBM14 promoted cell growth and inhibited apoptosis by affecting the reprogramming of glycolysis. CONCLUSIONS These results indicated that epigenetically activated RBM14 regulated growth and apoptosis by regulating the reprogramming of glycolysis and RBM14 may serve as a promising biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Yan Hu
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China
| | - Hanshuo Mu
- Medical School, Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhiping Deng
- Department of Respiratory, The First People's Hospital of Zigong City, No.42, Shangyihao Road, Ziliujing District, Zigong City, 643000, Sichuan, China.
| |
Collapse
|
4
|
Gao Y, Ma X, Lu H, Xu P, Xu C. PLAU is associated with cell migration and invasion and is regulated by transcription factor YY1 in cervical cancer. Oncol Rep 2022; 49:25. [PMID: 36524374 PMCID: PMC9813564 DOI: 10.3892/or.2022.8462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer, one of the most common malignancies, has a poor survival rate. The identification of more biomarkers for cervical cancer diagnosis and therapy is urgently needed. Plasminogen activator urokinase (PLAU) exerts multiple biological effects in various physiological and pathological processes; however the role of PLAU in cervical cancer progression is not fully understood. In the present study, the involvement and transcriptional regulation of PLAU in cervical cancer were explored. The expression of PLAU in cervical cancer was first analyzed, and PLAU was found to be overexpressed. In vitro experiments demonstrated that the migration and invasion of HeLa and HT3 cells were significantly suppressed by PLAU knockdown. Additionally, the core promoter of PLAU was confirmed, and the transcription factor YinYang 1 (YY1) was found to regulate PLAU mRNA expression. Overall, the present study elucidated the direct association between PLAU and cervical cancer, suggesting the YY1/PLAU axis as a potential novel therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Yanjun Gao
- Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Xinmei Ma
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Huanxi Lu
- Department of Gynecology, Dongchangfu People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Pan Xu
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China,Dr Pan Xu, Central Laboratory, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, Shandong 252000, P.R. China, E-mail:
| | - Chengling Xu
- Clinical Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China,Correspondence to: Dr Chengling Xu, Clinical Laboratory, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, Shandong 252000, P.R. China, E-mail:
| |
Collapse
|