1
|
Cui L, Yu L, Shao S, Zuo L, Hou H, Liu J, Zhang W, Liu J, Wu Q, Yu D. Improving differentiation of hemorrhagic brain metastases from non-neoplastic hematomas using radiomics and clinical feature fusion. Neuroradiology 2025:10.1007/s00234-025-03590-5. [PMID: 40131431 DOI: 10.1007/s00234-025-03590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
OBJECTIVES This study aimed to develop and validate a fusion model combining multi-sequence MRI radiomics and clinico-radiological features to distinguish hemorrhagic brain metastasis covered by hematoma (HBM.cbh) from non-neoplastic intracranial hematomas (nn-ICH). METHODS The data of 146 patients with pathologically or clinically proven HBM.cbh (n = 55) and nn-ICH (n = 91) were collected from two clinical institutions. Radiomics features were extracted from various regions (hemorrhage and/or edema) based on T2-weighted, T1-weighted, fluid-attenuated inversion-recovery, and T1 contrast-enhanced imaging. Synthetic minority over-sampling technique (SMOTE) was performed to balance the minority group (HBM.cbh). Logistic regression (LR) and k-nearest neighbors (KNN) were utilized to construct the models based on clinico-radiological factors (clinical model), radiomic features from various modalities of MRI (radiomics model), and their combination (fusion model). The area under the curve (AUC) values of different models on the external dataset were compared using DeLong's test. RESULTS The 4-sequence radiomics model based on the entire region performed the best in all radiomics models, with or without SMOTE, where the AUCs were 0.83 and 0.84, respectively. The AUC of clinical mode was 0.71 with SMOTE, and 0.62 without SMOTE. The fusion model demonstrated excellent predictive value with or without SMOTE (AUC: 0.93 and 0.90, respectively), outperforming both the radiomics and clinical model (0.93 vs. 0.83, 0.71, p < 0.05 and 0.90 vs. 0.84, 0.62, p < 0.05, respectively). CONCLUSIONS The multi-sequence radiomics model is an effective method for differentiating HBM.cbh from nn-ICH. It can yield the best diagnostic performance prediction model when combined with clinico-radiological features.
Collapse
Affiliation(s)
- Linyang Cui
- Qilu Hospital of Shandong University, Jinan, China
- Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Luyue Yu
- The School of Information Science and Engineering, Shandong University, Qingdao, China
- The Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Sai Shao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liping Zuo
- Qilu Hospital of Shandong University, Jinan, China
| | - Hongjun Hou
- Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Jie Liu
- Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Wenjun Zhang
- Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Ju Liu
- The School of Information Science and Engineering, Shandong University, Qingdao, China
- The Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Qiang Wu
- The School of Information Science and Engineering, Shandong University, Qingdao, China
- The Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Dexin Yu
- Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Shabo E, Potthoff AL, Zeyen T, Layer JP, Ehrentraut S, Scorzin J, Lehmann F, Lehnen NC, Banat M, Weller J, Gessler F, Paech D, Hamed M, Borger V, Radbruch A, Herrlinger U, Weinhold L, Vatter H, Schneider M. Transient and permanent hydrocephalus following resection of brain metastases located in the posterior fossa: incidence, risk factors and the necessity of perioperative external ventricular drainage placement. J Neurooncol 2025; 171:681-689. [PMID: 39607570 PMCID: PMC11729202 DOI: 10.1007/s11060-024-04890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
PURPOSE Prophylactic insertion of an external ventricular drainage (EVD) prior to the resection of posterior fossa metastases (PFMs) is a common approach to address postoperative transient and permanent hydrocephalus. However, predicting surgery-related hydrocephalus in the preoperative phase continues to be a challenge. This study aims to analyze the incidence, preoperatively collectable risk factors and necessity of perioperative external ventricular drainage placement after posterior fossa metastasis surgery. METHODS All patients undergoing surgery for PFMs at the authors' neuro-oncological center between 2015 and 2021 were identified and assessed for postoperative hydrocephalus occurrence. Tumour volume, edema volume, and 4th ventricle volume were assessed on preoperative magnetic resonance imaging scans using the IntelliSpace Portal 5.0. A multivariable logistic regression analysis was performed to identify possible predictors for postoperative hydrocephalus occurrence. RESULTS Postoperative hydrocephalus occurred in 14 of the 130 identified PFM patients (11%). Multivariable analysis and receiver operating characteristic (ROC) analysis revealed a 4th -ventricle-to-tumor-volume ratio ≤ 0.02 (OR 33.1, 95% CI 3.8-284.3, p = 0.001), an edema-to- tumor-volume ratio ≤ 0.85 (OR 10.6, 95% CI 2.4-47.4, p = 0.002), an imaging-morphological contact to the 4th ventricle (OR 5, 95% CI 1.4-18, p = 0.013), and multiple intracranial metastases (OR 2.4, 95% CI 1-5.9, p = 0.045) as independent predictors for surgery-related postoperative hydrocephalus occurrence. CONCLUSION The present study identifies preoperatively detectable risk factors for the occurrence of postoperative hydrocephalus following surgery for PFMs. These findings may provide guidance in clinical decision-making regarding prophylactic EVD placement.
Collapse
Affiliation(s)
- Ehab Shabo
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Anna-Laura Potthoff
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Thomas Zeyen
- Department of Neurooncology, Center of Neurology, University Hospital Bonn, Bonn, Germany
| | - Julian P Layer
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Stefan Ehrentraut
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jasmin Scorzin
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Felix Lehmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | | | - Mohammed Banat
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Johannes Weller
- Department of Neurooncology, Center of Neurology, University Hospital Bonn, Bonn, Germany
| | - Florian Gessler
- Department of Neurosurgery, Rostock University Medical Center, Rostock, Germany
| | - Daniel Paech
- Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Ulrich Herrlinger
- Department of Neurooncology, Center of Neurology, University Hospital Bonn, Bonn, Germany
| | - Leonie Weinhold
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, 53127, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
3
|
Eminovic S, Orth T, Dell'Orco A, Baumgärtner L, Morotti A, Wasilewski D, Guelen MS, Scheel M, Penzkofer T, Nawabi J. Clinical and imaging manifestations of intracerebral hemorrhage in brain tumors and metastatic lesions: a comprehensive overview. J Neurooncol 2024; 170:567-578. [PMID: 39222188 PMCID: PMC11614960 DOI: 10.1007/s11060-024-04811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE This observational study aims to provide a detailed clinical and imaging characterization/workup of acute intracerebral hemorrhage (ICH) due to either an underlying metastasis (mICH) or brain tumor (tICH) lesion. METHODS We conducted a retrospective, single-center study, evaluating patients presenting with occult ICH on initial CT imaging, classified as tICH or mICH on follow-up MRI imaging according to the H-Atomic classification. Demographic, clinical and radiological data were reviewed. RESULTS We included 116 patients (tICH: 20/116, 17.24%; mICH: 96/116, 82.76%). The most common malignancies causing ICH were lung cancer (27.59%), malignant melanoma (18.10%) and glioblastoma (10.34%). The three most common stroke-like symptoms observed were focal deficit (62/116, 53.45%), dizziness (42/116, 36.21%) and cognitive impairment (27/116, 23.28%). Highest mICH prevalence was seen in the occipital lobe (mICH: 28.13%, tICH: 0.00%; p = 0.004) with tICH more in the corpus callosum (tICH: 10.00%, mICH: 0.00%; p = 0.029). Anticoagulation therapy was only frequent in mICH patients (tICH: 0.00%, mICH: 5.21%; p = 0.586). Hemorrhage (tICH: 12682 mm3, mICH: 5708 mm3, p = 0.020) and edema volumes (tICH: 49389 mm3, mICH: 20972 mm3, p = 0.035) were significantly larger within tICH patients. CONCLUSION More than half of the patients with neoplastic ICH exhibited stroke-like symptoms. Lung cancer was most common in mICH, glioblastoma in tICH. While clinical presentations were similar, significant differences in tumor location and treatments were discernible.
Collapse
Affiliation(s)
- Semil Eminovic
- Department of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Tobias Orth
- Department of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrea Dell'Orco
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lukas Baumgärtner
- Department of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Andrea Morotti
- Department of Clinical and Experimental Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - David Wasilewski
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melisa S Guelen
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jawed Nawabi
- Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Freie Universität Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
4
|
Janas A, Jordan J, Bertalan G, Meyer T, Bukatz J, Sack I, Senger C, Nieminen-Kelhä M, Brandenburg S, Kremenskaia I, Krantchev K, Al-Rubaiey S, Mueller S, Koch SP, Boehm-Sturm P, Reiter R, Zips D, Vajkoczy P, Acker G. In vivo characterization of brain tumor biomechanics: magnetic resonance elastography in intracranial B16 melanoma and GL261 glioma mouse models. Front Oncol 2024; 14:1402578. [PMID: 39324003 PMCID: PMC11422132 DOI: 10.3389/fonc.2024.1402578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Magnetic Resonance Elastography (MRE) allows the non-invasive quantification of tumor biomechanical properties in vivo. With increasing incidence of brain metastases, there is a notable absence of appropriate preclinical models to investigate their biomechanical characteristics. Therefore, the purpose of this work was to assess the biomechanical characteristics of B16 melanoma brain metastases (MBM) and compare it to murine GL261 glioblastoma (GBM) model using multifrequency MRE with tomoelastography post processing. Methods Intracranial B16 MBM (n = 6) and GL261 GBM (n = 7) mouse models were used. Magnetic Resonance Imaging (MRI) was performed at set intervals after tumor implantation: 5, 7, 12, 14 days for MBM and 13 and 22 days for GBM. The investigations were performed using a 7T preclinical MRI with 20 mm head coil. The protocol consisted of single-shot spin echo-planar multifrequency MRE with tomoelastography post processing, contrast-enhanced T1- and T2-weighted imaging and diffusion-weighted imaging (DWI) with quantification of apparent diffusion coefficient of water (ADC). Elastography quantified shear wave speed (SWS), magnitude of complex MR signal (T2/T2*) and loss angle (φ). Immunohistological investigations were performed to assess vascularization, blood-brain-barrier integrity and extent of glucosaminoglucan coverage. Results Volumetric analyses displayed rapid growth of both tumor entities and softer tissue properties than healthy brain (healthy: 5.17 ± 0.48, MBM: 3.83 ± 0.55, GBM: 3.7 ± 0.23, [m/s]). SWS of MBM remained unchanged throughout tumor progression with decreased T2/T2* intensity and increased ADC on days 12 and 14 (p<0.0001 for both). Conversely, GBM presented reduced φ values on day 22 (p=0.0237), with no significant alterations in ADC. Histological analysis revealed substantial vascularization and elevated glycosaminoglycan content in both tumor types compared to healthy contralateral brain. Discussion Our results indicate that while both, MBM and GBM, exhibited softer properties compared to healthy brain, imaging and histological analysis revealed different underlying microstructural causes: hemorrhages in MBM and increased vascularization and glycosaminoglycan content in GBM, further corroborated by DWI and T2/T2* contrast. These findings underscore the complementary nature of MRE and its potential to enhance our understanding of tumor characteristics when used alongside established techniques. This comprehensive approach could lead to improved clinical outcomes and a deeper understanding of brain tumor pathophysiology.
Collapse
Affiliation(s)
- Anastasia Janas
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jakob Jordan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jan Bukatz
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carolin Senger
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Irina Kremenskaia
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Kiril Krantchev
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Charité 3R - Replace | Reduce | Refine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Rolf Reiter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Rauschenbach L, Kolbe P, Engel A, Ahmadipour Y, Oppong MD, Santos AN, Kebir S, Dobersalske C, Scheffler B, Deuschl C, Dammann P, Wrede KH, Sure U, Jabbarli R. Predictors and surgical outcome of hemorrhagic metastatic brain malignancies. J Neurooncol 2024; 169:165-173. [PMID: 38801490 PMCID: PMC11269501 DOI: 10.1007/s11060-024-04714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Intracerebral metastases present a substantial risk of tumor-associated intracerebral hemorrhage (ICH). This study aimed to investigate the risk of hemorrhagic events in brain metastases (BM) from various primary tumor sites and evaluate the safety and outcomes of surgical tumor removal. METHODS A retrospective, single-center review of medical records was conducted for patients who underwent BM removal between January 2016 and December 2017. Patients with hemorrhagic BM were compared to those with non-hemorrhagic BM. Data on preoperative predictors, perioperative management, and postoperative outcomes were collected and analyzed. RESULTS A total of 229 patients met the inclusion criteria. Melanoma metastases were significantly associated with preoperative hemorrhage, even after adjusting for confounding factors (p = 0.001). Poor clinical status (p = 0.001), larger tumor volume (p = 0.020), and unfavorable prognosis (p = 0.001) independently predicted spontaneous hemorrhage. Importantly, preoperative use of anticoagulant medications was not linked to increased hemorrhagic risk (p = 0.592). Surgical removal of hemorrhagic BM, following cessation of blood-thinning medication, did not significantly affect intraoperative blood loss, surgical duration, or postoperative rebleeding risk (p > 0.096). However, intra-tumoral hemorrhage was associated with reduced overall survival (p = 0.001). CONCLUSION This study emphasizes the safety of anticoagulation in patients with BM and highlights the safety of neurosurgical treatment in patients with hemorrhagic BM when blood-thinning medication is temporarily paused. The presence of intra-tumoral hemorrhage negatively impacts survival, highlighting its prognostic significance in BM patients. Further research with larger cohorts is warranted to validate these findings and elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Laurèl Rauschenbach
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany.
| | - Pia Kolbe
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Adrian Engel
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Alejandro N Santos
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Sied Kebir
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, Essen, Germany
| | - Celia Dobersalske
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, University of Duisburg-Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Björn Scheffler
- DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, University of Duisburg-Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology, University Hospital Essen, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
6
|
Wu X, Zhang B. A comment on 'An MRI radiomics approach to discriminate hemorrhage prone intracranial tumors before stereotactic biopsy'. Int J Surg 2024; 110:5190-5191. [PMID: 38652130 PMCID: PMC11325924 DOI: 10.1097/js9.0000000000001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Affiliation(s)
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
7
|
Zhang Y, Cao T, Zhu H, Song Y, Li C, Jiang C, Ma C. An MRI radiomics approach to discriminate haemorrhage-prone intracranial tumours before stereotactic biopsy. Int J Surg 2024; 110:4116-4123. [PMID: 38537059 PMCID: PMC11254189 DOI: 10.1097/js9.0000000000001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/11/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To explore imaging biomarkers predictive of intratumoral haemorrhage for lesions intended for elective stereotactic biopsy. METHOD This study included a retrospective cohort of 143 patients with 175 intracranial lesions intended for stereotactic biopsy. All the lesions were randomly split into a training dataset ( n =121) and a test dataset ( n =54) at a ratio of 7:3. Thirty-four lesions were defined as "hemorrhage-prone tumors" as haemorrhage occurred between initial diagnostic MRI acquisition and the scheduled biopsy procedure. Radiomics features were extracted from the contrast-enhanced T1 Weighted Imaging and T2 Weighted Imaging images. Features informative of haemorrhage were then selected by the LASSO algorithm, and an Support Vector Machine model was built with selected features. The Support Vector Machine model was further simplified by discarding features with low importance and calculating them using a "permutation importance" method. The model's performance was evaluated with confusion matrix-derived metrics and area under curve (AUC) values on the independent test dataset. RESULTS Nine radiomics features were selected as haemorrhage-related features of intracranial tumours by the LASSO algorithm. The simplified model's sensitivity, specificity, accuracy, and AUC reached 0.909, 0.930, 0.926, and 0.949 (95% CI: 0.865-1.000) on the test dataset in the discrimination of "hemorrhage-prone tumors". The permutation method rated feature "T2_gradient_firstorder_10Percentile" as the most important, the absence of which decreased the model's accuracy by 10.9%. CONCLUSION Radiomics features extracted on contrast-enhanced T1 Weighted Imaging and T2 Weighted Imaging sequences were predictive of future haemorrhage of intracranial tumours with favourable accuracy. This model may assist in the arrangement of biopsy procedures and the selection of target lesions in patients with multiple lesions.
Collapse
Affiliation(s)
- Yupeng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing
| | - Tingliang Cao
- Department of Neurosurgery, Kaifeng Central Hospital, Henan
| | - Haoyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing
| | - Yuqi Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing
| | - Changxuan Li
- Department of Neurosurgery, The first affiliated hospital of Hainan Medical University, Hainan, China
| | - Chuhan Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing
| | - Chao Ma
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing
| |
Collapse
|
8
|
Datta D, Ghosh P, Hazra S, Das S, Pathak D. Intratumoural haemorrhage in intracranial germ cell tumours: A review of literature with an illustrative case. World Neurosurg X 2024; 23:100336. [PMID: 38516025 PMCID: PMC10955666 DOI: 10.1016/j.wnsx.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Affiliation(s)
- Debajyoti Datta
- Department of Neurosurgery, Institute of Neurosciences, Kolkata, India
| | - Partha Ghosh
- Department of Neurosurgery, Institute of Neurosciences, Kolkata, India
| | - Sutirtha Hazra
- Department of Neurosurgery, Institute of Neurosciences, Kolkata, India
| | - Soutrik Das
- Department of Pathology, Institute of Neurosciences, Kolkata, India
| | - Debajyoti Pathak
- Department of Neurosurgery, Institute of Neurosciences, Kolkata, India
| |
Collapse
|
9
|
Shi Y, Kang X, Ge Y, Cao Y, Li Y, Guo X, Chen W, Guo S, Wang Y, Liu D, Wang Y, Xing H, Xia Y, Li J, Wu J, Liang T, Wang H, Liu Q, Jin S, Qu T, Li H, Yang T, Zhang K, Feng F, Wang Y, You H, Ma W. The molecular signature and prognosis of glioma with preoperative intratumoral hemorrhage: a retrospective cohort analysis. BMC Neurol 2024; 24:202. [PMID: 38877400 PMCID: PMC11177380 DOI: 10.1186/s12883-024-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/31/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.
Collapse
Affiliation(s)
- Yixin Shi
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yulu Ge
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Cao
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yilin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siying Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaning Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Delin Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Xia
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jiaming Wu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qianshu Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shanmu Jin
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tian Qu
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanzhang Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Tianrui Yang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kun Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, Peking Union Medical College Hospital, National Glioma MDT Alliance, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- China Anti-Cancer Association Specialty Committee of Glioma, Beijing, 100730, China.
| |
Collapse
|
10
|
Maciel CB, Busl KM. Neuro-oncologic Emergencies. Continuum (Minneap Minn) 2024; 30:845-877. [PMID: 38830073 DOI: 10.1212/con.0000000000001435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Neuro-oncologic emergencies have become more frequent as cancer remains one of the leading causes of death in the United States, second only to heart disease. This article highlights key aspects of epidemiology, diagnosis, and management of acute neurologic complications in primary central nervous system malignancies and systemic cancer, following three thematic classifications: (1) complications that are anatomically or intrinsically tumor-related, (2) complications that are tumor-mediated, and (3) complications that are treatment-related. LATEST DEVELOPMENTS The main driver of mortality in patients with brain metastasis is systemic disease progression; however, intracranial hypertension, treatment-resistant seizures, and overall decline due to increased intracranial burden of disease are the main factors underlying neurologic-related deaths. Advances in the understanding of tumor-specific characteristics can better inform risk stratification of neurologic complications. Following standardized grading and management algorithms for neurotoxic syndromes related to newer immunologic therapies is paramount to achieving favorable outcomes. ESSENTIAL POINTS Neuro-oncologic emergencies span the boundaries of subspecialties in neurology and require a broad understanding of neuroimmunology, neuronal hyperexcitability, CSF flow dynamics, intracranial compliance, and neuroanatomy.
Collapse
|
11
|
Najjary S, de Koning W, Kros JM, Mustafa DAM. Unlocking molecular mechanisms and identifying druggable targets in matched-paired brain metastasis of breast and lung cancers. Front Immunol 2023; 14:1305644. [PMID: 38149244 PMCID: PMC10750385 DOI: 10.3389/fimmu.2023.1305644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction The incidence of brain metastases in cancer patients is increasing, with lung and breast cancer being the most common sources. Despite advancements in targeted therapies, the prognosis remains poor, highlighting the importance to investigate the underlying mechanisms in brain metastases. The aim of this study was to investigate the differences in the molecular mechanisms involved in brain metastasis of breast and lung cancers. In addition, we aimed to identify cancer lineage-specific druggable targets in the brain metastasis. Methods To that aim, a cohort of 44 FFPE tissue samples, including 22 breast cancer and 22 lung adenocarcinoma (LUAD) and their matched-paired brain metastases were collected. Targeted gene expression profiles of primary tumors were compared to their matched-paired brain metastases samples using nCounter PanCancer IO 360™ Panel of NanoString technologies. Pathway analysis was performed using gene set analysis (GSA) and gene set enrichment analysis (GSEA). The validation was performed by using Immunohistochemistry (IHC) to confirm the expression of immune checkpoint inhibitors. Results Our results revealed the significant upregulation of cancer-related genes in primary tumors compared to their matched-paired brain metastases (adj. p ≤ 0.05). We found that upregulated differentially expressed genes in breast cancer brain metastasis (BM-BC) and brain metastasis from lung adenocarcinoma (BM-LUAD) were associated with the metabolic stress pathway, particularly related to the glycolysis. Additionally, we found that the upregulated genes in BM-BC and BM-LUAD played roles in immune response regulation, tumor growth, and proliferation. Importantly, we identified high expression of the immune checkpoint VTCN1 in BM-BC, and VISTA, IDO1, NT5E, and HDAC3 in BM-LUAD. Validation using immunohistochemistry further supported these findings. Conclusion In conclusion, the findings highlight the significance of using matched-paired samples to identify cancer lineage-specific therapies that may improve brain metastasis patients outcomes.
Collapse
Affiliation(s)
| | | | | | - Dana A. M. Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Joseph JV, Blaavand MS, Cai H, Vernejoul F, Knopper RW, Lindhardt TB, Skipper KA, Axelgaard E, Reinert L, Mikkelsen JG, Borghammer P, Degn SE, Perouzel E, Hager H, Hansen B, Kalucka JM, Vendelbo M, Paludan SR, Thomsen MK. STING activation counters glioblastoma by vascular alteration and immune surveillance. Cancer Lett 2023; 579:216480. [PMID: 37931834 DOI: 10.1016/j.canlet.2023.216480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with a median survival of 15 months and has limited treatment options. Immunotherapy with checkpoint inhibitors has shown minimal efficacy in combating GBM, and large clinical trials have failed. New immunotherapy approaches and a deeper understanding of immune surveillance of GBM are needed to advance treatment options for this devastating disease. In this study, we used two preclinical models of GBM: orthotopically delivering either GBM stem cells or employing CRISPR-mediated tumorigenesis by adeno-associated virus, to establish immunologically proficient and non-inflamed tumors, respectively. After tumor development, the innate immune system was activated through long-term STING activation by a pharmacological agonist, which reduced tumor progression and prolonged survival. Recruitment and activation of cytotoxic T-cells were detected in the tumors, and T-cell specificity towards the cancer cells was observed. Interestingly, prolonged STING activation altered the tumor vasculature, inducing hypoxia and activation of VEGFR, as measured by a kinome array and VEGF expression. Combination treatment with anti-PD1 did not provide a synergistic effect, indicating that STING activation alone is sufficient to activate immune surveillance and hinder tumor development through vascular disruption. These results guide future studies to refine innate immune activation as a treatment approach for GBM, in combination with anti-VEGF to impede tumor progression and induce an immunological response against the tumor.
Collapse
Affiliation(s)
- Justin V Joseph
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Huiqiang Cai
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Rasmus W Knopper
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thomas B Lindhardt
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Esben Axelgaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Søren E Degn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Hager
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Brian Hansen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Mikkel Vendelbo
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin K Thomsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
13
|
Najjary S, Kros JM, de Koning W, Vadgama D, Lila K, Wolf J, Mustafa DAM. Tumor lineage-specific immune response in brain metastatic disease: opportunities for targeted immunotherapy regimen? Acta Neuropathol Commun 2023; 11:64. [PMID: 37061716 PMCID: PMC10105417 DOI: 10.1186/s40478-023-01542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/05/2023] [Indexed: 04/17/2023] Open
Abstract
Metastases in the brain are the most severe and devastating complication of cancer. The incidence of brain metastasis is increasing. Therefore, the need of finding specific druggable targets for brain metastasis is demanding. The aim of this study was to compare the brain (immune) response to brain metastases of the most common tumor lineages, viz., lung adenocarcinoma and breast cancer. Targeted gene expression profiles of 11 brain metastasis of lung adenocarcinoma (BM-LUAD) were compared to 11 brain metastasis of breast cancer (BCBM) using NanoString nCounter PanCancer IO 360™ Panel. The most promising results were validated spatially using the novel GeoMx™ Digital Spatial Profiler (DSP) Technology. Additionally, Immune cell profiles and expression of drug targets were validated by multiplex immunohistochemistry. We found a more active immune response in BM-LUAD as compared to BCBM. In the BM-LUAD, 138 genes were upregulated as compared to BCBM (adj. p ≤ 0.05). Conversely, in BCBM 28 genes were upregulated (adj. p ≤ 0.05). Additionally, genes related to CD45 + cells, T cells, and cytotoxic T cells showed to be expressed higher in BM-LUAD compared to BCBM (adj. p = 0.01, adj. p = 0.023, adj. p = 0.023, respectively). The spatial quantification of the immune cells using the GeoMx DSP technique revealed the significantly higher quantification of CD14 and CD163 in tumor regions of BM-LUAD as compared to BCBM. Importantly, the immune checkpoint VISTA and IDO1 were identified as highly expressed in the BM-LUAD. Multiplex immunohistochemistry confirmed the finding and showed that VISTA is expressed mainly in BM-LUAD tumor cells, CD3 + cells, and to fewer levels in some microglial cells in BM-LUAD. This is the first report on differences in the brain immune response between metastatic tumors of different lineages. We found a far more extensive infiltration of immune cells in BM-LUAD as compared to BCBM. In addition, we found higher expression of VISTA and IDO1 in BM-LUAD. Taken together, targeted immune therapy should be considered to treat patients with BM-LUAD.
Collapse
Affiliation(s)
- Shiva Najjary
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Willem de Koning
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Disha Vadgama
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janina Wolf
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute of Tissue Medicine and Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Dana A M Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Kim SS, Lee S, Park M, Joo B, Suh SH, Ahn SJ. Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15030619. [PMID: 36765577 PMCID: PMC9913139 DOI: 10.3390/cancers15030619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hemorrhage in brain metastases (BMs) from lung cancer is common and associated with a poor prognosis. Research on associated factors of spontaneous hemorrhage in patients with BMs is limited. This study aimed to investigate the predictive risk factors for BM hemorrhage and assess whether hemorrhage affects patient survival. METHODS We retrospectively evaluated 159 BMs from 80 patients with lung adenocarcinoma from January 2017 to May 2022. Patients were classified into hemorrhagic and non-hemorrhagic groups. Patient demographics, lung cancer molecular subtype, treatment type, and tumor-node-metastasis stage were compared between the groups. Multivariate generalized estimating equation (GEE) analysis and gradient boosting were performed. To determine whether BM hemorrhage can stratify overall survival after BM (OSBM), univariate survival analysis was performed. RESULTS In the univariate analysis, hemorrhagic BMs were significantly larger and had a history of receiving combination therapy with tyrosine kinase inhibitor (TKI) and intracranial radiation (p < 0.05). Multivariate GEE showed that tumor size and combination therapy were independent risk factors for BM hemorrhage (p < 0.05). Gradient boosting demonstrated that the strongest predictor of BM hemorrhage was tumor size (variable importance: 49.83), followed by age (16.65) and TKI combined with intracranial radiation (13.81). There was no significant difference in OSBM between the two groups (p = 0.33). CONCLUSIONS Hemorrhage in BMs from lung adenocarcinomas may be associated with BM tumor size and a combination of TKI and intracranial radiotherapy. BM hemorrhage did not affect OSBM.
Collapse
Affiliation(s)
- Song Soo Kim
- Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
| | - Seoyoung Lee
- Division of Medical Oncology, Department of Internal Medicine, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
| | - Bio Joo
- Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, College of Medicine, Yonsei University, 211 Eonju-ro, Gangnamgu, Seoul 06273, Republic of Korea
- Correspondence: ; Tel.: +82-2-2019-3510; Fax: +82-2-3462-5472
| |
Collapse
|
15
|
Diaz M, Schiff D. Vascular complications in patients with brain tumors. Curr Opin Oncol 2022; 34:698-704. [PMID: 35788556 DOI: 10.1097/cco.0000000000000875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Venous thromboembolism (VTE) and other vascular events are common in patients with brain tumors, but their optimal management is not firmly established, in large part due to the competing risk of intracranial hemorrhage (ICH) in this population. RECENT FINDINGS There is conflicting evidence on whether therapeutic anticoagulation increases the risk of ICH in patients with brain tumors, with several metanalysis and retrospective cohort studies showing an increased risk and others showing no differences. Current guidelines recommend anticoagulating brain tumors patients with VTE with either low-molecular weight heparin (LMWH) or direct oral anticoagulants (DOACs), and several retrospective studies have shown the risk of ICH with DOACs is similar or smaller than with LMWH. SUMMARY An increased risk of VTE exists in a variety of brain tumor types. Most patients with brain tumors and VTE should receive therapeutic anticoagulation, and recent retrospective evidence supports the use of both LMWH and DOACs as effective and relatively safe in this setting. Patients with brain tumors are also at increased risk of other vascular tumor- or treatment-related complications whose optimal management is unclear.
Collapse
Affiliation(s)
- Maria Diaz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Treatment-Limiting Decisions in Patients with Spontaneous Intracerebral Hemorrhage. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58080989. [PMID: 35893103 PMCID: PMC9332709 DOI: 10.3390/medicina58080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
Background and Objectives: Treatment-limiting decisions (TLDs) are employed to actively withhold treatment/invasive interventions from patients in whom clinicians feel they would derive little to no benefit and/or suffer detrimental effects. Data regarding the employment of TLDs in patients with spontaneous intracerebral hemorrhage (ICH) remain sparse. Accordingly, this study sought to investigate both the prevalence of TLDs and factors driving TLDs in patients suffering from spontaneous ICH. Materials and Methods: This was a retrospective study of 249 consecutive patients with ICH treated from 2018−2019 at the Neurovascular Center of the University Hospital Bonn. Reasons deemed critical in the decision-making process with regard to TLD were ultimately extracted/examined via chart review of qualifying patients. Results: A total of 249 patients with ICH were included within the final analyses. During the time period examined, 49 patients (20%) had advanced directives in place, whereas in 53 patients (21%) consultation with relatives or acquaintances was employed before further treatment decisions. Overall, TLD ultimately manifested in 104 patients (42%). TLD was reached within 6 h after admission in 52 patients (50%). Congruent with severity of injury and expected outcomes, TLDs were more likely in patients with signs of cerebral herniation and an ICH score > 3 (p < 0.001). Conclusions: The present study examines details associated with TLDs in patients with spontaneous ICH. These data provide insight into key decisional processes and reinforce the need for further structured investigations in an effort to help guide patients and their families.
Collapse
|
17
|
Ostrowski RP, He Z, Pucko EB, Matyja E. Hemorrhage in brain tumor – An unresolved issue. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|