1
|
Stea DM, D’Alessio A. Caveolae: Metabolic Platforms at the Crossroads of Health and Disease. Int J Mol Sci 2025; 26:2918. [PMID: 40243482 PMCID: PMC11988808 DOI: 10.3390/ijms26072918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Caveolae are small flask-shaped invaginations of the plasma membrane enriched in cholesterol and sphingolipids. They play a critical role in various cellular processes, including signal transduction, endocytosis, and mechanotransduction. Caveolin proteins, specifically Cav-1, Cav-2, and Cav-3, in addition to their role as structural components of caveolae, have been found to regulate the activity of signaling molecules. A growing body of research has highlighted the pivotal role of caveolae and caveolins in maintaining cellular metabolic homeostasis. Indeed, studies have demonstrated that caveolins interact with the key components of insulin signaling, glucose uptake, and lipid metabolism, thereby influencing energy production and storage. The dysfunction of caveolae or the altered expression of caveolins has been associated with metabolic disorders, including obesity, type 2 diabetes, and ocular diseases. Remarkably, mutations in caveolin genes can disrupt cellular energy balance, promote oxidative stress, and exacerbate metabolic dysregulation. This review examines current research on the molecular mechanisms through which caveolae and caveolins regulate cellular metabolism, explores their involvement in the pathogenesis of metabolic disorders, and discusses potential therapeutic strategies targeting caveolin function and the stabilization of caveolae to restore metabolic homeostasis.
Collapse
Affiliation(s)
- Dante Maria Stea
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Alessio D’Alessio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Benarroch E. What Are the Functions of Caveolins and Their Role in Neurologic Disorders? Neurology 2025; 104:e213341. [PMID: 39805058 DOI: 10.1212/wnl.0000000000213341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
|
3
|
Pavlova S, Fab L, Dzarieva F, Ryabova A, Revishchin A, Panteleev D, Antipova O, Usachev D, Kopylov A, Pavlova G. Unite and Conquer: Association of Two G-Quadruplex Aptamers Provides Antiproliferative and Antimigration Activity for Cells from High-Grade Glioma Patients. Pharmaceuticals (Basel) 2024; 17:1435. [PMID: 39598347 PMCID: PMC11597096 DOI: 10.3390/ph17111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Background: High-grade gliomas remain a virtually incurable form of brain cancer. Current therapies are unable to completely eradicate the tumor, and the tumor cells that survive chemotherapy or radiation therapy often become more aggressive and resistant to further treatment, leading to inevitable relapses. While the antiproliferative effects of new therapeutic molecules are typically the primary focus of research, less attention is given to their influence on tumor cell migratory activity, which can play a significant role in recurrence. A potential solution may lie in the synergistic effects of multiple drugs on the tumor. Objectives: In this study, we investigated the effect of combined exposure to bi-(AID-1-T), an anti-proliferative aptamer, and its analog bi-(AID-1-C), on the migratory activity of human GBM cells. Results: We examined the effects of various sequences of adding bi-(AID-1-T) and bi-(AID-1-C) on five human GBM cell cultures. Our findings indicate that certain sequences significantly reduced the ability of tumor cells to migrate and proliferate. Additionally, the expression of Nestin, PARP1, L1CAM, Caveolin-1, and c-Myc was downregulated in human GBM cells that survived exposure, suggesting that the treatment had a persistent antitumor effect on these cells.
Collapse
Affiliation(s)
- Svetlana Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Lika Fab
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Fatima Dzarieva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Anastasia Ryabova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Dmitriy Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | - Olga Antipova
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Usachev
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| | - Alexey Kopylov
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
- Belozersky Research Institute of Physical Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Galina Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
- Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia
| |
Collapse
|
4
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Vishnoi M, Dereli Z, Yin Z, Kong EK, Kinali M, Thapa K, Babur O, Yun K, Abdelfattah N, Li X, Bozorgui B, Farach-Carson MC, Rostomily RC, Korkut A. A prognostic matrix gene expression signature defines functional glioblastoma phenotypes and niches. RESEARCH SQUARE 2024:rs.3.rs-4541464. [PMID: 38947019 PMCID: PMC11213219 DOI: 10.21203/rs.3.rs-4541464/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Interactions among tumor, immune, and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Methods Here, through computational genomics and proteomics approaches, we analyzed the functional and clinical relevance of CMP expression in GBM at bulk, single cell, and spatial anatomical resolution. Results We identified genes encoding CMPs whose expression levels categorize GBM tumors into CMP expression-high (M-H) and CMP expression-low (M-L) groups. CMP enrichment is associated with worse patient survival, specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells, and immune checkpoint gene expression. Anatomical and single-cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative niches that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene CMP expression signature, termed Matrisome 17 (M17) signature that further refines the prognostic value of CMP genes. The M17 signature is a significantly stronger prognostic factor compared to MGMT promoter methylation status as well as canonical subtypes, and importantly, potentially predicts responses to PD1 blockade. Conclusion The matrisome gene expression signature provides a robust stratification of GBM patients by survival and potential biomarkers of functionally relevant GBM niches that can mediate mesenchymal-immune cross talk. Patient stratification based on matrisome profiles can contribute to selection and optimization of treatment strategies.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, TX, 77030 USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX, 77030, USA
| | - Meric Kinali
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kisan Thapa
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
- Departments of BioSciences and Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Robert C. Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
7
|
Di Giulio S, Carata E, Muci M, Mariano S, Panzarini E. Impact of hypoxia on the molecular content of glioblastoma-derived exosomes. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:1-15. [PMID: 39698411 PMCID: PMC11648508 DOI: 10.20517/evcna.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 01/04/2024] [Indexed: 12/20/2024]
Abstract
Hypoxia is a pathologic condition characterized by a tissue oxygen deficiency due to either decreased oxygen intake from outside and/or disruption of oxygen utilization in cells. This condition may arise when the oxygen demand exceeds its supply or the partial pressure of oxygen is below 10 mmHg. This situation poses a significant problem for glioblastoma (GBM) patients as it can activate angiogenesis, increase invasiveness and metastatic risk, prolong tumor survival, and suppress anti-tumor immunity, making hypoxic cells resistant to radiotherapy and chemotherapy. Low oxygen levels in tumors can cause severe cellular changes that can affect the release of extracellular vesicles (EVs), especially exosomes (EXOs), altering their proteomic profile both qualitatively and quantitatively. EXOs represent an adaptive response to hypoxic stress; therefore, they can be used to determine oxygen levels in cancer and assess its aggressiveness. They not only release signaling molecules to attract cells that promote the formation of small vessel walls but also send signals to other tumor cells that trigger their migration, which in turn plays a crucial role in the formation of metastases under hypoxia. This review investigates how the molecular profile of GBM-derived exosomes changes under hypoxic conditions, offering future possibilities for noninvasive diagnosis and monitoring of brain tumor patients.
Collapse
Affiliation(s)
| | - Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| | | | | | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce 73100, Italy
| |
Collapse
|
8
|
Vishnoi M, Dereli Z, Yin Z, Kong EK, Kinali M, Thapa K, Babur O, Yun K, Abdelfattah N, Li X, Bozorgui B, Rostomily RC, Korkut A. A prognostic matrix code defines functional glioblastoma phenotypes and niches. RESEARCH SQUARE 2023:rs.3.rs-3285842. [PMID: 37790408 PMCID: PMC10543369 DOI: 10.21203/rs.3.rs-3285842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Interactions among tumor, immune and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Here, we characterize functional and clinical relevance of genes encoding CMPs in GBM at bulk, single cell, and spatial anatomical resolution. We identify a "matrix code" for genes encoding CMPs whose expression levels categorize GBM tumors into matrisome-high and matrisome-low groups that correlate with worse and better patient survival, respectively. The matrisome enrichment is associated with specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells and immune checkpoint gene expression. Anatomical and single cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative anatomic structures that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene matrisome signature that retains and further refines the prognostic value of genes encoding CMPs and, importantly, potentially predicts responses to PD1 blockade in clinical trials for GBM. The matrisome gene expression profiles provide potential biomarkers of functionally relevant GBM niches that contribute to mesenchymal-immune cross talk and patient stratification which could be applied to optimize treatment responses.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, TX, 77030 USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX, 77030, USA
| | - Meric Kinali
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kisan Thapa
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C. Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Vishnoi M, Dereli Z, Yin Z, Kong EK, Kinali M, Thapa K, Babur O, Yun K, Abdelfattah N, Li X, Bozorgui B, Rostomily RC, Korkut A. A prognostic matrix code defines functional glioblastoma phenotypes and niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543903. [PMID: 37333072 PMCID: PMC10274725 DOI: 10.1101/2023.06.06.543903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interactions among tumor, immune and vascular niches play major roles in driving glioblastoma (GBM) malignancy and treatment responses. The composition, heterogeneity, and localization of extracellular core matrix proteins (CMPs) that mediate such interactions, however, are not well understood. Here, we characterize functional and clinical relevance of genes encoding CMPs in GBM at bulk, single cell, and spatial anatomical resolution. We identify a "matrix code" for genes encoding CMPs whose expression levels categorize GBM tumors into matrisome-high and matrisome-low groups that correlate with worse and better survival, respectively, of patients. The matrisome enrichment is associated with specific driver oncogenic alterations, mesenchymal state, infiltration of pro-tumor immune cells and immune checkpoint gene expression. Anatomical and single cell transcriptome analyses indicate that matrisome gene expression is enriched in vascular and leading edge/infiltrative anatomic structures that are known to harbor glioma stem cells driving GBM progression. Finally, we identified a 17-gene matrisome signature that retains and further refines the prognostic value of genes encoding CMPs and, importantly, potentially predicts responses to PD1 blockade in clinical trials for GBM. The matrisome gene expression profiles may provide biomarkers of functionally relevant GBM niches that contribute to mesenchymal-immune cross talk and patient stratification to optimize treatment responses.
Collapse
Affiliation(s)
- Monika Vishnoi
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
| | - Zeynep Dereli
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Houston, TX, 77030 USA
| | - Elisabeth K. Kong
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Statistics, Rice University, Houston, TX, 77030, USA
| | - Meric Kinali
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kisan Thapa
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Ozgun Babur
- Computer Science, College of Science and Mathematics, University of Massachusetts Boston, Boston, MA, 02125
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurology, Weill Cornell Medical School, New York NY, 10065
| | - Xubin Li
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Behnaz Bozorgui
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert C. Rostomily
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030 USA
- Department of Neurosurgery, University of Washington School of Medicine, Seattle WA, 98195
- Department of Neurosurgery, Weill Cornell Medical School, New York NY, 10065
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Park YK, Jangili P, Zi S, Kang RH, Kim D, Kim JS. SIWV tetrapeptide and ROS-responsive prodrug conjugate for advanced glioblastoma therapy. Chem Commun (Camb) 2022; 58:10941-10944. [PMID: 36082694 DOI: 10.1039/d2cc03777g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new conjugate formulation, SIWV-PB-SN, based on glioblastoma (GBM)-homing SIWV tetrapeptide and an ROS-responsive prodrug is reported. SIWV-PB-SN selectively penetrates the GBM cells and releases anti-GBM drug (SN-38) via ROS-induced linker cleavage. This study presents a new insight for a more advanced therapeutic approach to overcoming GBM.
Collapse
Affiliation(s)
- Yoon Kyung Park
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Soyu Zi
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| | - Rae Hyung Kang
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Dokyoung Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea. .,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea. .,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.,Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|