1
|
Lu Y, Bian J, Ferrolino DO, Movahed F. Knockdown of circXPO1 inhibits the development of oral squamous cell carcinoma cells. Oral Dis 2024; 30:4971-4981. [PMID: 38622909 DOI: 10.1111/odi.14951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) have emerged as pivotal regulators of cellular processes in human malignancies, including oral squamous cell carcinoma (OSCC). METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect RNA expression levels of circXPO1, miR-524-5p and cyclin D1 (CCND1). Colony formation assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay were performed to analyze cell proliferation, while transwell assay was carried out to investigate the cell migration and invasion. Cell apoptosis was assessed by flow cytometry. Protein expression analysis was implemented by Western blot assay. Additionally, lactate production and glucose consumption were investigated using a lactate assay kit and glucose assay kit, respectively. The in vivo tumorigenic potential of circXPO1 was evaluated using a xenograft mouse model assay. RESULTS Elevated levels of circXPO1 and CCND1, alongside reduced miR-524-5p expression were decreased in OSCC tissues and cells. Knockdown of circXPO1 in OSCC cells inhibited their proliferative, migratory and invasive capacities, as well as glycolysis, prompting apoptosis. Moreover, circXPO1 silencing hindered tumor growth in vivo. MiR-524-5p could be sequestered by circXPO1, and its inhibition could counteract the beneficial effects of circXPO1 knockdown on OSCC progression. CONCLUSION Knockdown of circXPO1 inhibited OSCC progression by up-regulating miR-524-5p and down-regulating CCND1 expression, which might provide potential targets for OSCC treatment.
Collapse
Affiliation(s)
- Yao Lu
- Department of Oral and Maxillofacial Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Jiaqi Bian
- Department of Orthodontics, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Darwin Omaña Ferrolino
- Oral and Maxillofacial Surgery; Aesthetics, Variahealth Dentistry, Medicine and Esthetics, Philippines, Philippines
| | - Fatemeh Movahed
- Oral and Maxillofacial Surgery, Neco Dental Clinic, Tehran, Iran
| |
Collapse
|
2
|
Zhu X, Zhang P. m6A-modified circXPO1 accelerates colorectal cancer progression via interaction with FMRP to promote WWC2 mRNA decay. J Transl Med 2024; 22:931. [PMID: 39402642 PMCID: PMC11472528 DOI: 10.1186/s12967-024-05716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Recent evidence has demonstrated the vital roles of circular RNAs (circRNAs) in the progression of colorectal cancer (CRC); however, their functions and mechanisms in CRC need to be further explored. This study aimed to uncover the biological function of circXPO1 in CRC progression. METHODS CircXPO1 was identified by Sanger sequencing, RNase R, and actinomycin D treatment assays. Colony formation, scratch, transwell assays, and mouse xenograft models were adopted to evaluate CRC cell growth and metastasis in vitro and in vivo. Subcellular expression of circXPO1 was detected by FISH and nuclear-cytoplasmic separation assays. Molecular mechanisms were investigated by MeRIP, RIP, and RNA pull-down assays. Target molecular expression was detected by RT-qPCR, Western blotting and immunohistochemical staining. RESULTS circXPO1 was up-regulated in CRC tissues and cells, which indicated a poor prognosis of CRC patients. circXPO1 deficiency delayed the growth, EMT, and metastasis of CRC cells. Mechanistical experiments indicated that down-regulation of ALKBH5 enhanced IGF2BP2-mediated m6A modification of circXPO1 to increase circXPO1 expression. Furthermore, circXPO1 interacted with FMRP to reduce the mRNA stability of WWC2, which consequently resulted in Hippo-YAP pathway activation. Rescue experiments suggested that WWC2 overexpression abrogated circXPO1-mediated malignant capacities of CRC cells. The in vivo growth and liver metastasis of CRC cells were restrained by circXPO1 depletion or WWC2 overexpression. CONCLUSIONS m6A-modified circXPO1 by ALKBH5/IGF2BP2 axis destabilized WWC2 via interaction with FMRP to activate Hippo-YAP pathway, thereby facilitating CRC growth and metastasis. Targeting circXPO1 might be a potential therapeutic strategy for CRC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Proliferation
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/metabolism
- Disease Progression
- Fragile X Mental Retardation Protein/metabolism
- Fragile X Mental Retardation Protein/genetics
- Gene Expression Regulation, Neoplastic
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Metastasis
- RNA Stability/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Xiaowen Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China
- General surgery, The first Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang Province, P. R. China
| | - Pengxia Zhang
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, No. 258 Xuefu Road, Xiangyang District, Jiamusi, 154000, Heilongjiang Province, P. R. China.
| |
Collapse
|
3
|
Xia Y, Yu X, Yuan Z, Yang Y, Liu Y. Whole-Transcriptome Analysis Reveals Potential CeRNA Regulatory Mechanism in Takifugu rubripes against Cryptocaryon irritans Infection. BIOLOGY 2024; 13:788. [PMID: 39452097 PMCID: PMC11504436 DOI: 10.3390/biology13100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 10/26/2024]
Abstract
Cryptocaryon irritans (C. irritans) is a proto-ciliate parasite that infects marine fishes, including the cultured species Takifugu rubripes (T. rubripes), causing disease and potential mortality. In host organisms, infection by parasites triggers an immune response that is modulated by regulatory elements including proteins and non-coding RNAs. In this study, the whole transcriptome RNA sequencing of T. rubripes gill tissue before and after infection with C. irritans was performed to reveal the competitive endogenous RNA (ceRNA) regulatory network. Histomorphology revealed gill segment swelling and parasitic invasion in the infected group. The analysis identified 18 differentially expressed miRNAs (DEMs), 214 lncRNAs (DELs), 2501 genes (DEGs), and 7 circRNAs (DECs) in the infected group. Gene Ontology (GO) enrichment analysis revealed that these genes were notably enriched in the Wnt signaling pathway and mTOR signaling pathway. The co-expression networks (lncRNA/circRNA-miRNA-mRNA) were constructed based on correlation analysis of the differentially expressed RNAs. Further analysis suggested that the LOC105418663-circ_0000361-fru-miR-204a-fzd3a ceRNA axis was potentially involved in the regulation of immune responses against C. irritans infection. Finally, the expression levels of DEG, DEL, and DEM were validated. This study reveals the regulatory mechanism of a candidate ceRNA network, providing insights into the potential mechanism of T. rubripes' infection with C. irritans.
Collapse
Affiliation(s)
- Yuqing Xia
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Fisheries and Life Science, Dalian Ocean University, 52 Heishijiao Street, Dalian 116023, China
| | - Xiaoqing Yu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Zhen Yuan
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Yi Yang
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Dalian Ocean University, Ministry of Education, 52 Heishijiao Street, Dalian 116023, China; (Y.X.); (Y.Y.)
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
4
|
Aumann WK, Kazi R, Harrington AM, Wechsler DS. Novel-and Not So Novel-Inhibitors of the Multifunctional CRM1 Protein. Oncol Rev 2024; 18:1427497. [PMID: 39161560 PMCID: PMC11330842 DOI: 10.3389/or.2024.1427497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Chromosome Region Maintenance 1 (CRM1), also known as Exportin 1 (XPO1), is a protein that is critical for transport of proteins and RNA to the cytoplasm through the nuclear pore complex. CRM1 inhibition with small molecule inhibitors is currently being studied in many cancers, including leukemias, solid organ malignancies and brain tumors. We review the structure of CRM1, its role in nuclear export, the current availability of CRM1 inhibitors, and the role of CRM1 in a number of distinct cellular processes. A deeper understanding of how CRM1 functions in nuclear export as well as other cellular processes may allow for the development of additional novel CRM1 inhibitors.
Collapse
Affiliation(s)
- Waitman K. Aumann
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Rafi Kazi
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Amanda M. Harrington
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Daniel S. Wechsler
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Li F, Liu J, Miao J, Hong F, Liu R, Lv Y, Yang Y, He A, Wang J. Circular RNA circXPO1 Promotes Multiple Myeloma Progression by Regulating miR-495-3p/DNA Damage-Induced Transcription 4 Axis. DNA Cell Biol 2024; 43:39-55. [PMID: 38079253 PMCID: PMC10825292 DOI: 10.1089/dna.2023.0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2024] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy that results from uncontrolled plasma cell proliferation. Circular RNAs are versatile regulators that influence cancer aggression. The pathogenic mechanism of circXPO1 in MM is still unknown. In this study, the expression of circXPO1, miR-495-3p, and DNA damage-induced transcription 4 (DDIT4) was detected. Knockdown and overexpression assays were used to evaluate the effect of circXPO1 on MM. Specifically, 5-ethynyl-2'-deoxyuridine and cell counting kit-8 assay were used to investigate cell proliferation. Meanwhile, flow cytometry was adopted to detect cell apoptosis and cell cycle. Apoptosis-associated and cell cycle-related proteins were detected by Western blot. Mechanistically, biotin RNA pull-down assay and dual-luciferase assay were implemented to verify the combination among miR495-3p and circXPO1 or DDIT4. The function of circXPO1 in vivo was explored in xenograft experiments. The results showed that circXPO1 was up-regulated in both MM samples and MM cell lines and miR-495-3p was down-regulated in MM patients. Silencing circXPO1 inhibited cell proliferation, increased apoptosis rates, and caused the G1 phase arrest. Overexpression of circXPO1 yielded opposite results. In addition, RNA pull-down experiment demonstrated the interaction between circXPO1 and miR-495-3p. Silencing miR-495-3p rescued the inhibitory function caused by the knockdown of circXPO1. DDIT4 was the target of miR-495-3p. Finally, silencing circXPO1 inhibited the growth of subcutaneous tumors in vivo. In conclusion, our findings showed that circXPO1 could promote MM progression via the miR-495-3p/DDIT4 axis.
Collapse
Affiliation(s)
- Fangmei Li
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jiyu Miao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yang Lv
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Jianli Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
6
|
García-Rodríguez JL, Korsgaard U, Ahmadov U, Jarlstad Olesen MT, Dietrich KG, Hansen EB, Vissing SM, Ulhøi BP, Dyrskjøt L, Sørensen KD, Kjems J, Hager H, Kristensen LS. Spatial Profiling of Circular RNAs in Cancer Reveals High Expression in Muscle and Stromal Cells. Cancer Res 2023; 83:3340-3353. [PMID: 37477923 PMCID: PMC10570686 DOI: 10.1158/0008-5472.can-23-0748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Circular RNAs (circRNA) are covalently closed molecules that can play important roles in cancer development and progression. Hundreds of differentially expressed circRNAs between tumors and adjacent normal tissues have been identified in studies using RNA sequencing or microarrays, emphasizing a strong translational potential. Most previous studies have been performed using RNA from bulk tissues and lack information on the spatial expression patterns of circRNAs. Here, we showed that the majority of differentially expressed circRNAs from bulk tissue analyses of colon tumors relative to adjacent normal tissues were surprisingly not differentially expressed when comparing cancer cells directly with normal epithelial cells. Manipulating the proliferation rates of cells grown in culture revealed that these discrepancies were explained by circRNAs accumulating to high levels in quiescent muscle cells due to their high stability; on the contrary, circRNAs were diluted to low levels in the fast-proliferating cancer cells due to their slow biogenesis rates. Thus, different subcompartments of colon tumors and adjacent normal tissues exhibited striking differences in circRNA expression patterns. Likewise, the high circRNA content in muscle cells was also a strong confounding factor in bulk analyses of circRNAs in bladder and prostate cancers. Together, these findings emphasize the limitations of using bulk tissues for studying differential circRNA expression in cancer and highlight a particular need for spatial analysis in this field of research. SIGNIFICANCE The abundance of circRNAs varies systematically between subcompartments of solid tumors and adjacent tissues, implying that differentially expressed circRNAs discovered in bulk tissue analyses may reflect differences in cell type composition between samples.
Collapse
Affiliation(s)
| | - Ulrik Korsgaard
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
| | - Ulvi Ahmadov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Emma B. Hansen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina D. Sørensen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Henrik Hager
- Department of Clinical Pathology, Vejle Hospital, Vejle, Denmark
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
7
|
Qiu S, Zou L, Qiu R, Wang X. Circular RNA circHMCU promotes breast tumorigenesis through miR-4458/PGK1 regulatory cascade. Hereditas 2023; 160:12. [PMID: 36949536 PMCID: PMC10035165 DOI: 10.1186/s41065-023-00275-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are abnormally expressed in breast cancer (BC). However, the biological function and mechanism of circHMCU still need to be further explored. METHODS The expression levels of circHMCU, miR-4458 and phosphoglycerate kinase 1 (PGK1) were measured by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The glucose uptake, lactate production and ATP level were assayed by related commercial kits. Cell Counting Kit-8 (CCK8), 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry assays were used to test cell proliferation and apoptosis, respectively. The migratory and invasive abilities were detected by transwell and wound-healing assays. The relationships among circHMCU, miR-4458 and PGK1 were verified by dual-luciferase reporter assay. The function of circHMCU in tumor growth was evaluated by animal studies. RESULTS CircHMCU was upregulated in BC tissues and cell lines, whereas miR-4458 was downregulated. For biological experiments, circHMCU knockdown inhibited cell proliferation, migration, glycolysis, while promoted cell apoptosis. CircHMCU bound miR-4458, and miR-4458 targeted PGK1. MiR-4458 inhibition reversed circHMCM knockdown-mediated effects on BC cell malignant behaviors. MiR-4458 overexpression suppressed cell glycolysis, proliferation, and metastasis and promoted apoptosis in BC cells through PGK1 upregulation. Additionally, circHMCU suppressed tumor growth in vivo. CONCLUSION CircHMCU acted as an oncogenic factor by regulating the miR-4458/PGK1 axis in BC.
Collapse
Affiliation(s)
- Shubian Qiu
- Department of Thyroid and Breast Surgery, Nanyang Second General Hospital, NO. 66, Jianshe East Road, Nanyang, 473000, Henan Province, China
| | - Lele Zou
- Department of Radiotherapy, Nanyang Second General Hospital, Nanyang, 473000, Henan Province, China
| | - Ruimin Qiu
- Department of Thyroid and Breast Surgery, Nanyang Second General Hospital, NO. 66, Jianshe East Road, Nanyang, 473000, Henan Province, China
| | - Xin Wang
- Department of Thyroid and Breast Surgery, Nanyang Second General Hospital, NO. 66, Jianshe East Road, Nanyang, 473000, Henan Province, China.
| |
Collapse
|
8
|
Diagnostic Strategies for Urologic Cancer Using Expression Analysis of Various Oncogenic Surveillance Molecules—From Non-Coding Small RNAs to Cancer-Specific Proteins. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Urinary-tract-related tumors are prone to simultaneous or heterogeneous multiple tumor development within the primary organ. Urologic tumors have a very high risk of recurrence in the long and short term. This may be related to the disruption of homeostasis on the genetic level, such as the induction of genetic mutations due to exposure to various carcinogenic factors and the disruption of cancer suppressor gene functions. It is essential to detect the cancer progression signals caused by genetic abnormalities and find treatment therapies. In this review, we discuss the usefulness of tumor-expressing clinical biomarkers for predicting cancer progression. Furthermore, we discuss various factors associated with disturbed intracellular signals and those targeted by microRNAs, which are representative of non-coding small RNAs.
Collapse
|
9
|
Taheri M, Najafi S, Basiri A, Hussen BM, Baniahmad A, Jamali E, Ghafouri-Fard S. The Role and Clinical Potentials of Circular RNAs in Prostate Cancer. Front Oncol 2021; 11:781414. [PMID: 34804984 PMCID: PMC8604184 DOI: 10.3389/fonc.2021.781414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, prostate cancer (PCa) is the second most commonly diagnosed cancer in men globally. Early diagnosis may help in promoting survival in the affected patients. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) which have been found to show extensive dysregulation in a handful of human diseases including cancers. Progressions in RNA identification techniques have provided a vast number of circRNAs exhibiting either up-regulation or down-regulation in PCa tissues compared to normal adjacent tissues. The mechanism of action is not clear for most of dysregulated circRNAs. Among them, function of a number of newly identified dysregulated circRNAs have been assessed in PCa cells. Increase in cell proliferation, migration, invasion, and metastasis have been reported for up-regulated circRNAs which suggest their role as oncogenes. On the other hand, down-regulated circRNAs have shown tumor suppressing actions in experimental studies. Furthermore, in a majority of studies, circRNAs have been found to sponge microRNAs (miRNAs), negatively regulating expression or activity of the downstream miRNAs. Additionally, they have been identified in interaction with regulatory proteins. This axis consequently regulates a signaling pathway, a tumor suppressor, or an oncogene. Easy, quick, and reliable detection of circRNAs in human body fluids also suggests their potentials as biomarker candidates for diagnosis and prediction of prognosis in PCa patients. In this review, we have discussed the role and potentials of a number of dysregulated circRNAs in PCa.
Collapse
Affiliation(s)
- Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|