1
|
Tiskratok W, Chuinsiri N, Limraksasin P, Kyawsoewin M, Jitprasertwong P. Extracellular Matrix Stiffness: Mechanotransduction and Mechanobiological Response-Driven Strategies for Biomedical Applications Targeting Fibroblast Inflammation. Polymers (Basel) 2025; 17:822. [PMID: 40292716 PMCID: PMC11946729 DOI: 10.3390/polym17060822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
The extracellular matrix (ECM) is a dynamic network providing mechanical and biochemical cues that regulate cellular behavior. ECM stiffness critically influences fibroblasts, the primary ECM producers, particularly in inflammation and fibrosis. This review explores the role of ECM stiffness in fibroblast-driven inflammation and tissue remodeling, focusing on the physicochemical and biological mechanisms involved. Engineered materials, hydrogels, and polydimethylsiloxane (PDMS) are highlighted for replicating tissue-specific stiffness, enabling precise control over cell-matrix interactions. The surface functionalization of substrate materials, including collagen, polydopamine, and fibronectin, enhances bioactivity and fibroblast adhesion. Key mechanotransduction pathways, such as integrin signaling and YAP/TAZ activation, are related to regulating fibroblast behaviors and inflammatory responses. The role of fibroblasts in driving chronic inflammatory diseases emphasizes their therapeutic potentials. Advances in ECM-modifying strategies, including tunable biomaterials and hydrogel-based therapies, are explored for applications in tissue engineering, drug delivery, anti-inflammatory treatments, and diagnostic tools for the accurate diagnosis and prognosis of ECM stiffness-related inflammatory diseases. This review integrates mechanobiology with biomedical innovations, providing a comprehensive prognosis of fibroblast responses to ECM stiffness and outlining future directions for targeted therapies.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Nontawat Chuinsiri
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (P.L.); (M.K.)
| | - Paiboon Jitprasertwong
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (N.C.); (P.J.)
- Oral Health Centre, Suranaree University of Technology Hospital, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
2
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
3
|
Li Q, Mao J, Wang Q, Yao L, Xu F, Dong F. Standard b-value DWI-derived stiffness index analysis may provide a way to evaluate the development of intracerebral hematoma. Front Neurol 2025; 15:1527861. [PMID: 40040640 PMCID: PMC11876965 DOI: 10.3389/fneur.2024.1527861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/30/2024] [Indexed: 03/06/2025] Open
Abstract
Background and purpose The development of intracerebral hemorrhage (ICH) is closely related to mechanical forces. However, noninvasively evaluating mechanical forces for ICH patients in the current clinical setting is challenging. In this study, we aimed to build an easily accessible stiffness index (STI) and evaluate the stiffness of the perihematomal edema (PHE) region in ICH patients. Materials and methods In this retrospective study, two cohorts of 57 patients were included. One cohort (the exploratory cohort) comprised patients with both standard b-value diffusion-weighted imaging (sDWI) (b-values of 0 and 1,000 s/mm2, b0 and b1000) and higher b-value diffusion-weighted imaging (hDWI) (b-values of 200 and 1,500 s/mm2). Another cohort (the hemorrhage cohort) consisted of patients who were diagnosed with ICH and who underwent sDWI within 48 h from onset. The hDWI-based virtual shear modulus (μdiff) was calculated and correlated with the sDWI data in the exploratory cohort. In the hemorrhage cohort, STI maps that were used to estimate μdiff were generated. The mean STI (mSTI) and coefficient of variation (COV) of the STI were computed on the basis of the STI maps in the whole and largest-slice PHE regions. Results The STI could be calculated with the Equation 0.047697*S1000-0.022944*S0 + 5.359883, where S1000 and S0 represent the signal intensities of the b1000 and b0 images, respectively. In the whole and largest-slice PHE regions, both the mSTI and COV were correlated with the hematoma volume (p < 0.01), but neither were correlated with the time from onset. Conclusion The standard b-value DWI-derived stiffness index analysis may provide a noninvasive and easily accessible way to evaluate the development of ICH.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Dong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
do Amaral Coutinho C, Castro PT, Lopes FP, de Freitas Lima LAC, Araujo Júnior E, Aranda OL, de Araújo LFB, Marchiori E, Werner H. Elastographic and vascular findings of uterine myomas assessed by ultrasound. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:1281-1287. [PMID: 39150480 DOI: 10.1002/jcu.23784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE The objectives of this study were to evaluate the vascularization pattern of uterine myoma (UM) by ultrasonography using Superb Microvascular Imaging (SMI) and tissue stiffness elastography. METHOD A prospective and cross-sectional study was carried out between March 2020 and December 2022 among women with clinical and ultrasound diagnosis of UM who would subsequently undergo radiofrequency ablation. Ultrasound examination was performed using both transvaginal and transabdominal routes. UM vascularization pattern was assessed by power Doppler (PD) and SMI, while elastographic pattern was assessed by shear wave (SWE) and strain (STE). FIGO classification, location, and measurement of the largest UM were also described. RESULTS A total of 21 women diagnosed with UM were evaluated. There was a predominance of nulliparous women and 20 women (95.2%) reported desire for pregnancy. Of the 18 women with abnormal uterine bleeding, 15 (83.3%) had abdominal cramping. As far as previous treatment, 7 (33.3%) had undergone myomectomy for other UM. The mean uterine and UM volumes were 341.9 cm3 (90-730) and 126.52 cm3 (6.0-430), respectively. There was a predominance of hypoechogenic lesions (90.5%). There was also preponderance of UM in the FIGO 2-5 classification (n = 9; 42.9%). Vascularization patter was mostly moderate (score 2) in 9 cases (42.9%). The majority of UM were considered to have intermediate stiffness (n = 10; 47.6%). CONCLUSION The majority of UM showed vascularization and moderate stiffness. A relationship was observed between the stiffness of the UM assessed by elastography and its FIGO classification.
Collapse
Affiliation(s)
- Cristiana do Amaral Coutinho
- Department of Radiology, Clínica Alta (DASA), Rio de Janeiro, Brazil
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Flávia Paiva Lopes
- Department of Radiology, Clínica Alta (DASA), Rio de Janeiro, Brazil
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Edward Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine - Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Discipline of Woman Health, Municipal University of São Caetano do Sul (USCS), São Caetano do Sul, Brazil
| | | | | | - Edson Marchiori
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Heron Werner
- Department of Radiology, Clínica Alta (DASA), Rio de Janeiro, Brazil
- Department of Radiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Obrzut M, Atamaniuk V, Ehman RL, Yin M, Cholewa M, Gutkowski K, Domka W, Obrzut B. Postprandial splenic stiffness changes on magnetic resonance elastography in a young healthy population. NMR IN BIOMEDICINE 2024; 37:e5047. [PMID: 37813110 PMCID: PMC11618576 DOI: 10.1002/nbm.5047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Magnetic resonance elastography (MRE) is an accurate noninvasive diagnostic tool for assessing the stiffness of parenchymal organs, including the spleen. However, this measurement may be biased due to postprandial changes in splenic stiffness. The aim of the current study was to evaluate postprandial changes in spleen stiffness assessed by MRE in a large sample of healthy volunteers. This was a prospective institutional research ethics board-approved study. Healthy volunteers with no history of liver disease were recruited for an MRE test and blood draw from December 2018 to July 2019. Each participant underwent spleen MRE after at least 4 h of fasting and again 30 min after a 1000 kcal meal. Also, 14 randomly selected volunteers underwent additional MRE examinations at 1.5 and 2.5 h after food intake. The MRE data were acquired at 60 Hz using a 1.5-T MRI scanner. The spleen stiffness was assessed using a weighted mean of stiffness values from regions of interest manually drawn on three to five spleen slices. Spearman's rank correlation, Wilcoxon signed-rank, Friedman, and Mann-Whitney tests were used for statistical analysis. A total of 100 volunteers met the inclusion criteria and were eventually enrolled in this study (age 23 ± 2 years; 65 women). The mean spleen stiffness for the whole group increased by 7.9% (p < 0.001) from the mean ± SD value of 5.09 ± 0.63 (95% CI: 4.96-5.21) kPa in the fasting state to 5.47 ± 0.66 (95% CI 5.34-5.60) kPa 30 min after the meal and then gradually decreased. However, even 2 h 30 min after the meal, the spleen stiffness was higher than in the fasting state. This difference was statistically significant at p less than 0.001. It was concluded that meal intake results in a statistically significant elevation of spleen stiffness that persists for 2.5 h. This finding supports the recommendation for routine fasting for more than 2.5 h prior to assessing MRE-based spleen stiffness.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Vitaliy Atamaniuk
- Department of Biophysics, College of Natural Sciences, Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marian Cholewa
- Department of Biophysics, College of Natural Sciences, Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Wojciech Domka
- Department of Otolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
6
|
Obrzut M, Atamaniuk V, Ehman RL, Yin M, Cholewa M, Gutkowski K, Domka W, Ozga D, Obrzut B. Evaluation of Spleen Stiffness in Young Healthy Volunteers Using Magnetic Resonance Elastography. Diagnostics (Basel) 2023; 13:2738. [PMID: 37685274 PMCID: PMC10486410 DOI: 10.3390/diagnostics13172738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
PURPOSE Magnetic resonance elastography (MRE) has been established as the most accurate noninvasive technique for diagnosing liver fibrosis. Recent publications have suggested that the measurement of splenic stiffness is useful in setting where portal hypertension may be present. The goal of the current study was to compile normative data for MRE-assessed stiffness measurements of the spleen in young adults. MATERIALS AND METHODS A total of 100 healthy young Caucasian volunteers (65 females and 35 males) in the age range of 20 to 32 years were enrolled in this study. The participants reported no history of chronic spleen and liver disease, normal alcohol consumption, and a normal diet. The MRE data were acquired by using a 1.5 T whole-body scanner and a 2D GRE pulse sequence with 60 Hz excitation. Spleen stiffness was calculated as a weighted mean of stiffness values in the regions of interest manually drawn by the radiologist on three to five spleen slices. RESULTS Mean spleen stiffness was 5.09 ± 0.65 kPa for the whole group. Male volunteers had slightly higher splenic stiffness compared to females: 5.28 ± 0.78 vs. 4.98 ± 0.51 kPa, however, this difference was not statistically significant (p = 0.12). Spleen stiffness did not correlate with spleen fat content and liver stiffness but a statistically significant correlation with spleen volume was found. CONCLUSIONS The findings of this study provide normative values for 2D MRE-based measurement of spleen stiffness in young adults, a basis for assessing the value of this biomarker in young patients with portal system pathologies.
Collapse
Affiliation(s)
- Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Vitaliy Atamaniuk
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Meng Yin
- Department of Radiology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Marian Cholewa
- Department of Biophysics, Institute of Physics, College of Natural Sciences, University of Rzeszow, Prof. Stanisława Pigonia Str. 1, 35-310 Rzeszow, Poland; (V.A.); (M.C.)
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Wojciech Domka
- Department of Otolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland;
| | - Dorota Ozga
- Institute of Health Sciences, Medical College, University of Rzeszow, Warzywna 1a, 35-310 Rzeszow, Poland; (M.O.)
| | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland
| |
Collapse
|
7
|
Liu D, Chen J, Zhang Y, Dai Y, Yao X. Magnetic resonance elastography-derived stiffness: potential imaging biomarker for differentiation of benign and malignant pancreatic masses. Abdom Radiol (NY) 2023; 48:2604-2614. [PMID: 37237155 DOI: 10.1007/s00261-023-03956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE This study sought to determine the diagnostic performance of magnetic resonance elastography (MRE) for pancreatic solid masses, compared with diffusion-weighted imaging (DWI) and serum CA19-9, to establish a threshold for differentiating between pancreatic ductal adenocarcinoma (PDAC) and benign tumors in pancreas. MATERIALS AND METHODS Between July 2021 to January 2023, 75 adult patients confirmed with pancreatic solid tumors were enrolled in this prospective and consecutive study. All patients underwent MRE and DWI examinations that were both performed with a spin echo-EPI sequence. Stiffness maps and apparent diffusion coefficient (ADC) maps were generated, with MRE-derived mass stiffness and stiffness ratio (computing as the ratio of mass stiffness to the parenchyma stiffness) and DWI-derived ADC values obtained by placing regions of interest over the focal tumors on stiffness and ADC maps. Further analysis of comparing diagnostic performances was assessed by calculating the area under ROC curves. RESULTS PDAC had significantly higher tumor stiffness [3.795 (2.879-4.438) kPa vs. 2.359 (2.01-3.507) kPa, P = 0.0003], stiffness ratio [1.939 (1.562-2.511) vs. 1.187 (1.031-1.453), P < 0.0001] and serum CA19-9 level [276 (31.73-1055) vs. 10.45 (7.825-14.15), P < 0.0001] than other pancreatic masses. Mass stiffness, stiffness ratio and serum CA19-9 showed good diagnostic performance for differentiation with AUC of 0.7895, 0.8392 and 0.9136 respectively. The sensitivity/specificity/positive predictive value/negative predictive value for differentiating malignant from benign pancreatic tumors with mass stiffness (cutoff, > 2.8211 kPa) and stiffness ratio (cutoff, > 1.5117) were 78.4/66.7/82.9/60% and 77.8/83.3/90.3/65.2% respectively. The combined performance of Mass stiffness, stiffness ratio and serum CA19-9 got an AUC of 0.9758. CONCLUSION MRE holds excellent clinical potential in discriminating pancreatic ductal adenocarcinoma from other pancreatic solid masses according to their mechanical properties.
Collapse
Affiliation(s)
- Dingxia Liu
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yongming Dai
- MR Collaboration, Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Xiuzhong Yao
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China.
- Department of Radiology, Zhongshan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Wang XL, Lin S, Lyu GR. Advances in the clinical application of ultrasound elastography in uterine imaging. Insights Imaging 2022; 13:141. [PMID: 36057675 PMCID: PMC9440970 DOI: 10.1186/s13244-022-01274-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Changes in tissue stiffness by physiological or pathological factors in tissue structure are identified earlier than their clinical features. Pathological processes such as uterine fibrosis, adenomyosis, endometrial lesions, infertility, and premature birth can manifest as tissue elasticity changes. In clinical settings, elastography techniques based on ultrasonography, optical coherence tomography, and magnetic resonance imaging are widely used for noninvasive measurement of mechanical properties in patients, providing valuable tool and information for diagnosis and treatment. Ultrasound elastography (USE) plays a critical role in obstetrics and gynecology clinical work because of its simplicity, non-invasiveness, and repeatability. This article reviews the recent progress of USE in uterine tumor diagnosis (especially early diagnosis and treatment effect evaluation), prediction of preterm birth, and intrauterine insemination. We believe that USE, especially shear wave elastography, may serve as a potential means to assess tissue stiffness, thereby improving the diagnosis and treatment of adenomyosis, fibroids, endometrial lesions, cervical cancer, and precise management of preterm birth and intrauterine insemination monitoring.
Collapse
Affiliation(s)
- Xia-Li Wang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.,Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Guo-Rong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
9
|
Magnetic Resonance Imaging (MRI) and MR Spectroscopic Methods in Understanding Breast Cancer Biology and Metabolism. Metabolites 2022; 12:metabo12040295. [PMID: 35448482 PMCID: PMC9030399 DOI: 10.3390/metabo12040295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
A common malignancy that affects women is breast cancer. It is the second leading cause of cancer-related death among women. Metabolic reprogramming occurs during cancer growth, invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of techniques have shown potential for illustrating physiological and molecular processes changes before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H) MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood, urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies can provide information on more metabolites than what is seen by in vivo MRS, thus providing a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed enormous potential in the development of new therapeutic approaches. Recently, multiparametric MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in the diagnosis and therapeutic monitoring of breast cancer.
Collapse
|