1
|
Zhu J, Tian D, Zhang X, Du Q. Prognostic impact of anoikis-related genes in low-grade glioma: A bioinformatics and experimental study. Technol Health Care 2025:9287329251321265. [PMID: 40289625 DOI: 10.1177/09287329251321265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
BackgroundLow-grade glioma (LGG) is a common central nervous system tumor with high recurrence rates and limited long-term survival improvements despite current treatments. Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix, plays a key role in tumor progression and metastasis. However, its involvement in LGG remains poorly understood.ObjectiveThis study aims to analyze the molecular features, subgrouping, and clinical prognostic significance of disruption-induced anoikis in low-grade glioma using bioinformatics analysis and experimental validation.MethodsWe integrated transcriptome and clinical information data from the TCGA and CGGA databases. We identified prognosis-related genes associated with disruption-induced anoikis and glioma through analysis of the anoikis gene set. Survival prognosis analysis was performed on these genes. Furthermore, dimensional reduction clustering and enriched analysis of GO/KEGG were conducted to explore the biological functions and signal pathways of disruption-induced anoikis genes in glioma. Drug sensitivity screening and immune-related function analysis were also carried out.ResultsOur bioinformatics analysis identified 266 anoikis genes, including BRMS1, NTRK2, CAV1, AKT1, and ITGB1, which significantly influenced overall survival in low-grade glioma patients. Clustering analysis revealed three distinct clusters, with cluster C having the worst prognosis. The anoikis genes were associated with metabolic pathways, immune cells, and cell cycle-related pathways. Enriched analysis showed immune-related functions and signaling pathways. Drug sensitivity screening identified potential drugs with clinical efficacy, such as cisplatin, doxorubicin, erlotinib, and etoposide. A prognostic model was constructed for anoikis-related genes, showing significant survival differences. Immune checkpoint analysis indicated sensitivity to immunotherapy. Experimental validation confirmed the downregulation of prognosis-related risk genes for anoikis in human glioma cell lines, inhibiting cell anoikis.ConclusionThis study provides insights into the molecular characteristics and clinical importance of disruption-induced anoikis in low-grade glioma. The findings contribute to the understanding of glioma progression and offer potential therapeutic targets.
Collapse
Affiliation(s)
- Jinwei Zhu
- Department of Neurosurgery, Lishui City People's Hospital, Lishui City, Zhejiang Province, China
| | - Da Tian
- Department of Neurosurgery, Lishui City People's Hospital, Lishui City, Zhejiang Province, China
| | - Xuelei Zhang
- Department of Neurosurgery, Lishui City People's Hospital, Lishui City, Zhejiang Province, China
| | - Qinghua Du
- Department of Neurosurgery, Lishui City People's Hospital, Lishui City, Zhejiang Province, China
| |
Collapse
|
2
|
Farahani S, Hejazi M, Moradizeyveh S, Di Ieva A, Fatemizadeh E, Liu S. Diagnostic Accuracy of Deep Learning Models in Predicting Glioma Molecular Markers: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2025; 15:797. [PMID: 40218147 PMCID: PMC11988998 DOI: 10.3390/diagnostics15070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Integrating deep learning (DL) into radiomics offers a noninvasive approach to predicting molecular markers in gliomas, a crucial step toward personalized medicine. This study aimed to assess the diagnostic accuracy of DL models in predicting various glioma molecular markers using MRI. Methods: Following PRISMA guidelines, we systematically searched PubMed, Scopus, Ovid, and Web of Science until 27 February 2024 for studies employing DL algorithms to predict gliomas' molecular markers from MRI sequences. The publications were assessed for the risk of bias, applicability concerns, and quality using the QUADAS-2 tool and the radiomics quality score (RQS). A bivariate random-effects model estimated pooled sensitivity and specificity, accounting for inter-study heterogeneity. Results: Of 728 articles, 43 were qualified for qualitative analysis, and 30 were included in the meta-analysis. In the validation cohorts, MGMT methylation had a pooled sensitivity of 0.74 (95% CI: 0.66-0.80) and a pooled specificity of 0.75 (95% CI: 0.65-0.82), both with significant heterogeneity (p = 0.00, I2 = 80.90-84.50%). ATRX and TERT mutations had a pooled sensitivity of 0.79 (95% CI: 0.67-0.87) and 0.81 (95% CI: 0.72-0.87) and a pooled specificity of 0.85 (95% CI: 0.78-0.91) and 0.70 (95% CI: 0.61-0.77), respectively. Meta-regression analyses revealed that significant heterogeneity was influenced by data sources, MRI sequences, feature extraction methods, and validation techniques. Conclusions: While the DL models show promising prediction accuracy for glioma molecular markers, variability in the study settings complicates clinical translation. To bridge this gap, future efforts should focus on harmonizing multi-center MRI datasets, incorporating external validation, and promoting open-source studies and data sharing.
Collapse
Affiliation(s)
- Somayeh Farahani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Marjaneh Hejazi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran 14618-84513, Iran;
| | - Sahar Moradizeyveh
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| | - Emad Fatemizadeh
- Department of Electrical Engineering, Sharif University of Technology, Tehran 14588-89694, Iran;
| | - Sidong Liu
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.M.); (A.D.I.)
| |
Collapse
|
3
|
Wang H, Argenziano MG, Yoon H, Boyett D, Save A, Petridis P, Savage W, Jackson P, Hawkins-Daarud A, Tran N, Hu L, Singleton KW, Paulson L, Dalahmah OA, Bruce JN, Grinband J, Swanson KR, Canoll P, Li J. Biologically informed deep neural networks provide quantitative assessment of intratumoral heterogeneity in post treatment glioblastoma. NPJ Digit Med 2024; 7:292. [PMID: 39427044 PMCID: PMC11490546 DOI: 10.1038/s41746-024-01277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Intratumoral heterogeneity poses a significant challenge to the diagnosis and treatment of recurrent glioblastoma. This study addresses the need for non-invasive approaches to map heterogeneous landscape of histopathological alterations throughout the entire lesion for each patient. We developed BioNet, a biologically-informed neural network, to predict regional distributions of two primary tissue-specific gene modules: proliferating tumor (Pro) and reactive/inflammatory cells (Inf). BioNet significantly outperforms existing methods (p < 2e-26). In cross-validation, BioNet achieved AUCs of 0.80 (Pro) and 0.81 (Inf), with accuracies of 80% and 75%, respectively. In blind tests, BioNet achieved AUCs of 0.80 (Pro) and 0.76 (Inf), with accuracies of 81% and 74%. Competing methods had AUCs lower or around 0.6 and accuracies lower or around 70%. BioNet's voxel-level prediction maps reveal intratumoral heterogeneity, potentially improving biopsy targeting and treatment evaluation. This non-invasive approach facilitates regular monitoring and timely therapeutic adjustments, highlighting the role of ML in precision medicine.
Collapse
Affiliation(s)
- Hairong Wang
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyunsoo Yoon
- Department of Industrial Engineering, Yonsei University, Seoul, South Korea
| | - Deborah Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Akshay Save
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Petros Petridis
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - William Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Pamela Jackson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Andrea Hawkins-Daarud
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Nhan Tran
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
| | - Leland Hu
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA
| | - Kyle W Singleton
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Lisa Paulson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Osama Al Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jack Grinband
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristin R Swanson
- Mathematical NeuroOncology Lab, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jing Li
- H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
5
|
Gao J, Liu Z, Pan H, Cao X, Kan Y, Wen Z, Chen S, Wen M, Zhang L. Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI. J Magn Reson Imaging 2024; 59:1655-1664. [PMID: 37555723 DOI: 10.1002/jmri.28945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH-mutant astrocytoma patients. PURPOSE To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. STUDY TYPE Retrospective. POPULATION Two hundred fifty-one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion. FIELD STRENGTH/SEQUENCE 3.0 T/1.5 T: Contrast-enhanced T1-weighted spin-echo inversion recovery sequence (CE-T1WI) and T2-weighted fluid-attenuation spin-echo inversion recovery sequence (T2FLAIR). ASSESSMENT A total of 1106 radiomics and 1000 deep learning features extracted from CE-T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning-based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance. STATISTICAL TESTING Pearson chi-square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05. RESULTS The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902). DATA CONCLUSION Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE-T1WI and T2FLAIR outperformed the optimal radiomics or DLR model. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi Liu
- Department of Nuclear Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hongyu Pan
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Xu Cao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubo Kan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Wen
- Department of Radiology, Sichuan Cancer Hospital, Chengdu, China
| | - Shanxiong Chen
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Sabeghi P, Zarand P, Zargham S, Golestany B, Shariat A, Chang M, Yang E, Rajagopalan P, Phung DC, Gholamrezanezhad A. Advances in Neuro-Oncological Imaging: An Update on Diagnostic Approach to Brain Tumors. Cancers (Basel) 2024; 16:576. [PMID: 38339327 PMCID: PMC10854543 DOI: 10.3390/cancers16030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
This study delineates the pivotal role of imaging within the field of neurology, emphasizing its significance in the diagnosis, prognostication, and evaluation of treatment responses for central nervous system (CNS) tumors. A comprehensive understanding of both the capabilities and limitations inherent in emerging imaging technologies is imperative for delivering a heightened level of personalized care to individuals with neuro-oncological conditions. Ongoing research in neuro-oncological imaging endeavors to rectify some limitations of radiological modalities, aiming to augment accuracy and efficacy in the management of brain tumors. This review is dedicated to the comparison and critical examination of the latest advancements in diverse imaging modalities employed in neuro-oncology. The objective is to investigate their respective impacts on diagnosis, cancer staging, prognosis, and post-treatment monitoring. By providing a comprehensive analysis of these modalities, this review aims to contribute to the collective knowledge in the field, fostering an informed approach to neuro-oncological care. In conclusion, the outlook for neuro-oncological imaging appears promising, and sustained exploration in this domain is anticipated to yield further breakthroughs, ultimately enhancing outcomes for individuals grappling with CNS tumors.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Paniz Zarand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Sina Zargham
- Department of Basic Science, California Northstate University College of Medicine, 9700 West Taron Drive, Elk Grove, CA 95757, USA;
| | - Batis Golestany
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, 900 University Ave., Riverside, CA 92521, USA;
| | - Arya Shariat
- Kaiser Permanente Los Angeles Medical Center, 4867 W Sunset Blvd, Los Angeles, CA 90027, USA;
| | - Myles Chang
- Keck School of Medicine, University of Southern California, 1975 Zonal Avenue, Los Angeles, CA 90089, USA;
| | - Evan Yang
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Priya Rajagopalan
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Daniel Chang Phung
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, 1500 San Pablo St., Los Angeles, CA 90033, USA; (P.S.); (E.Y.); (P.R.); (D.C.P.)
| |
Collapse
|
7
|
Wen X, Wang C, Pan Z, Jin Y, Wang H, Zhou J, Sun C, Ye G, Chen M. Integrated analysis reveals the potential of cluster of differentiation 86 as a key biomarker in high-grade glioma. Aging (Albany NY) 2023; 15:15402-15418. [PMID: 38154107 PMCID: PMC10781505 DOI: 10.18632/aging.205359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023]
Abstract
This study aimed to evaluate the potential of cluster of differentiation 86 (CD86) as a biomarker in high-grade glioma (HGG). The TCGA and TCIA databases were used to obtain the CD86 expression value, clinical data, and MRI images of HGG patients. Prognostic values were assessed by the Kaplan-Meier method, Receiver operating characteristic curve (ROC), Cox regression, logistic regression, and nomogram analyses. CD86-associated pathways were also explored. We found that CD86 was significantly upregulated in HGG compared with the normal group. Survival analysis showed a significant association between CD86 high expression and shorter overall survival time. Its independent prognostic value was also confirmed. These results suggested the possibility of CD86 as a biomarker in HGG. We also innovatively established 2 radiomics models with Support Vector Machine (SVM) and Logistic regression (LR) algorithms to predict the CD86 expression. The 2 models containing 5 optimal features by SVM and LR methods showed similar favorable performance in predicting CD86 expression in the training set, and their performance were also confirmed in validation set. These results indicated the successful construction of a radiomics model for non-invasively predicting biomarker in HGG. Finally, pathway analysis indicated that CD86 might be involved in the natural killer cell-mediated cytotoxicity in HGG progression.
Collapse
Affiliation(s)
- Xuebin Wen
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chaochao Wang
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Zhihao Pan
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Yao Jin
- Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Hongcai Wang
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Jiang Zhou
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Chengfeng Sun
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Gengfan Ye
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| | - Maosong Chen
- Department of Neurosurgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, Zhejiang, China
| |
Collapse
|
8
|
Luckett PH, Olufawo M, Lamichhane B, Park KY, Dierker D, Verastegui GT, Yang P, Kim AH, Chheda MG, Snyder AZ, Shimony JS, Leuthardt EC. Predicting survival in glioblastoma with multimodal neuroimaging and machine learning. J Neurooncol 2023; 164:309-320. [PMID: 37668941 PMCID: PMC10522528 DOI: 10.1007/s11060-023-04439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.
Collapse
Affiliation(s)
- Patrick H Luckett
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Michael Olufawo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Bidhan Lamichhane
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Health Sciences, Oklahoma State University, Tulsa, OK, 74136, USA
| | - Ki Yun Park
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Peter Yang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Milan G Chheda
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Tumor Center at Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO, 63130, USA
- Department of Mechanical Engineering and Materials Science, Washington University in Saint Louis, St. Louis, MO, 63130, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Brain Laser Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
- National Center for Adaptive Neurotechnologies, Albany, USA
| |
Collapse
|
9
|
Zhang H, Fan X, Zhang J, Wei Z, Feng W, Hu Y, Ni J, Yao F, Zhou G, Wan C, Zhang X, Wang J, Liu Y, You Y, Yu Y. Deep-learning and conventional radiomics to predict IDH genotyping status based on magnetic resonance imaging data in adult diffuse glioma. Front Oncol 2023; 13:1143688. [PMID: 37711207 PMCID: PMC10499353 DOI: 10.3389/fonc.2023.1143688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Objectives In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors. Methods In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values. Results Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results. Conclusion In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.
Collapse
Affiliation(s)
- Hongjian Zhang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyuan Wei
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Feng
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifang Hu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiaying Ni
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fushen Yao
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gaoxin Zhou
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wan
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junjie Wang
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Yu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute of Medical Informatics and Management, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Liang W, Tian W, Wang Y, Wang P, Wang Y, Zhang H, Ruan S, Shao J, Zhang X, Huang D, Ding Y, Bai X. Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models. BMC Cancer 2022; 22:1237. [PMID: 36447168 PMCID: PMC9710154 DOI: 10.1186/s12885-022-10273-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Preoperative prediction of pancreatic cystic neoplasm (PCN) differentiation has significant value for the implementation of personalized diagnosis and treatment plans. This study aimed to build radiomics deep learning (DL) models using computed tomography (CT) data for the preoperative differential diagnosis of common cystic tumors of the pancreas. METHODS Clinical and CT data of 193 patients with PCN were collected for this study. Among these patients, 99 were pathologically diagnosed with pancreatic serous cystadenoma (SCA), 55 were diagnosed with mucinous cystadenoma (MCA) and 39 were diagnosed with intraductal papillary mucinous neoplasm (IPMN). The regions of interest (ROIs) were obtained based on manual image segmentation of CT slices. The radiomics and radiomics-DL models were constructed using support vector machines (SVMs). Moreover, based on the fusion of clinical and radiological features, the best combined feature set was obtained according to the Akaike information criterion (AIC) analysis. Then the fused model was constructed using logistic regression. RESULTS For the SCA differential diagnosis, the fused model performed the best and obtained an average area under the curve (AUC) of 0.916. It had a best feature set including position, polycystic features (≥6), cystic wall calcification, pancreatic duct dilatation and radiomics-DL score. For the MCA and IPMN differential diagnosis, the fused model with AUC of 0.973 had a best feature set including age, communication with the pancreatic duct and radiomics score. CONCLUSIONS The radiomics, radiomics-DL and fused models based on CT images have a favorable differential diagnostic performance for SCA, MCA and IPMN. These findings may be beneficial for the exploration of individualized management strategies.
Collapse
Affiliation(s)
- Wenjie Liang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Wuwei Tian
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Yifan Wang
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Pan Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Yubizhuo Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Hongbin Zhang
- grid.513202.7Department of Radiology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Shijian Ruan
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, Zhejiang University, Zhejiang, Hangzhou China
| | - Jiayuan Shao
- grid.13402.340000 0004 1759 700XPolytechnic Institute, Zhejiang University, Zhejiang, Hangzhou China
| | - Xiuming Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Danjiang Huang
- grid.469601.cDepartment of Radiology, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yong Ding
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Xueli Bai
- grid.452661.20000 0004 1803 6319Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Zhejiang, Hangzhou China ,grid.452661.20000 0004 1803 6319Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| |
Collapse
|
11
|
Wang Q, Chen Y, Qin S, Liu X, Liu K, Xin P, Zhao W, Yuan H, Lang N. Prognostic Value and Quantitative CT Analysis in RANKL Expression of Spinal GCTB in the Denosumab Era: A Machine Learning Approach. Cancers (Basel) 2022; 14:5201. [PMID: 36358621 PMCID: PMC9658803 DOI: 10.3390/cancers14215201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/15/2023] Open
Abstract
The receptor activator of the nuclear factor kappa B ligand (RANKL) is the therapeutic target of denosumab. In this study, we evaluated whether radiomics signature and machine learning analysis can predict RANKL status in spinal giant cell tumors of bone (GCTB). This retrospective study consisted of 107 patients, including a training set (n = 82) and a validation set (n = 25). Kaplan-Meier survival analysis was used to validate the prognostic value of RANKL status. Radiomic feature extraction of three heterogeneous regions (VOIentire, VOIedge, and VOIcore) from pretreatment CT were performed. Followed by feature selection using Selected K Best and least absolute shrinkage and selection operator (LASSO) analysis, three classifiers (random forest (RF), support vector machine, and logistic regression) were used to build models. The area under the curve (AUC), accuracy, F1 score, recall, precision, sensitivity, and specificity were used to evaluate the models' performance. Classification of 75 patients with eligible follow-up based on RANKL status resulted in a significant difference in progression-free survival (p = 0.035). VOIcore-based RF classifier performs best. Using this model, the AUCs for the training and validation cohorts were 0.880 and 0.766, respectively. In conclusion, a machine learning approach based on CT radiomic features could discriminate prognostically significant RANKL status in spinal GCTB, which may ultimately aid clinical decision-making.
Collapse
Affiliation(s)
- Qizheng Wang
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Yongye Chen
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Siyuan Qin
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoming Liu
- Department of Research and Development, United Imaging Intelligence (Beijing) Co., Ltd., Yongteng North Road, Haidian District, Beijing 100089, China
- Beijing United Imaging Research Institute of Intelligent Imaging, Yongteng North Road, Haidian District, Beijing 100089, China
| | - Ke Liu
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Peijin Xin
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Weili Zhao
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Hu Y, Zhu S, Xu R, Wang M, Chen F, Zhang Z, Feng B, Wang J, Chen Z, Wang J. Delta-catenin attenuates medulloblastoma cell invasion by targeting EMT pathway. Front Genet 2022; 13:867872. [PMID: 36303547 PMCID: PMC9595215 DOI: 10.3389/fgene.2022.867872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Medulloblastoma is the most common pediatric malignant tumor in central nervous system. Although its prognosis has been improved enormously by the combination treatments with surgery, radiotherapy, and chemotherapy, it still could progress via invasion and distant dissemination. We aimed to investigate molecular mechanisms of medulloblastoma invasion in the current work. Methods: The gene expression profile of medulloblastoma were analyzed based on the data deposited in Gene Expression Omnibus (GEO) and filtered according to brain specific proteins in the Uniprot. Delta-catenin was identified and further analyzed about its expression and roles in the prognosis of medulloblastoma patient. The function of delta-catenin on cell invasion and migration were investigated by transwell and wound healing assay. Whether delta-catenin participates in the epithelial-mesenchymal transition (EMT) regulated invasion was also studied. Results: Delta-catenin expression was highly upregulated in tumor tissues compared to normal tissues from medulloblastoma patients in five independent, nonoverlapping cohorts. Furthermore, delta-catenin expression level was upregulated in WNT subgroup, and significantly correlated with better prognosis, and associated with metastasis through GEO database analysis. Functional assays indicated that delta-catenin inhibited medulloblastoma cell invasion and migration through regulating the key factors of EMT pathway, such as E-cadherin and vimentin. Conclusion: Delta-catenin might be a positive predictor for prognosis of medulloblastoma patients, through attenuating medulloblastoma cell invasion by inhibiting EMT pathway.
Collapse
Affiliation(s)
- Yuanjun Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rizhen Xu
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Manxia Wang
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Furong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zeshun Zhang
- Department of Surgery, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Binghong Feng
- Department of Pharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Zhongping Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Jing Wang, Zhongping Chen, Jian Wang,
| |
Collapse
|
13
|
The Potential and Emerging Role of Quantitative Imaging Biomarkers for Cancer Characterization. Cancers (Basel) 2022; 14:cancers14143349. [PMID: 35884409 PMCID: PMC9321521 DOI: 10.3390/cancers14143349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Modern, personalized therapy approaches are increasingly changing advanced cancer into a chronic disease. Compared to imaging, novel omics methodologies in molecular biology have already achieved an individual characterization of cancerous lesions. With quantitative imaging biomarkers, analyzed by radiomics or deep learning, an imaging-based assessment of tumoral biology can be brought into clinical practice. Combining these with other non-invasive methods, e.g., liquid profiling, could allow for more individual decision making regarding therapies and applications. Abstract Similar to the transformation towards personalized oncology treatment, emerging techniques for evaluating oncologic imaging are fostering a transition from traditional response assessment towards more comprehensive cancer characterization via imaging. This development can be seen as key to the achievement of truly personalized and optimized cancer diagnosis and treatment. This review gives a methodological introduction for clinicians interested in the potential of quantitative imaging biomarkers, treating of radiomics models, texture visualization, convolutional neural networks and automated segmentation, in particular. Based on an introduction to these methods, clinical evidence for the corresponding imaging biomarkers—(i) dignity and etiology assessment; (ii) tumoral heterogeneity; (iii) aggressiveness and response; and (iv) targeting for biopsy and therapy—is summarized. Further requirements for the clinical implementation of these imaging biomarkers and the synergistic potential of personalized molecular cancer diagnostics and liquid profiling are discussed.
Collapse
|