1
|
Li S, Zhang H, Yu H, Wu Y, Yan L, Guan X, Dong B, Zhao M, Tian X, Hao C, Wu J. Combination of eribulin and anlotinib exerts synergistic cytotoxicity in retroperitoneal liposarcoma by inducing endoplasmic reticulum stress. Cell Death Discov 2024; 10:355. [PMID: 39117615 PMCID: PMC11310505 DOI: 10.1038/s41420-024-02103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Primary retroperitoneal liposarcoma (RLPS) is a rare heterogeneous tumor occurring within retroperitoneal space, and its overall survival has not improved much in the past few decades. Based on a small-sample clinical practice at our center, patients with RLPS can greatly benefit from anlotinib and eribulin combination. In this study, we investigated the combinational effect of anlotinib and eribulin on RLPS. In vitro experiments revealed that a low dose of anlotinib significantly enhances the cytotoxic effects of eribulin, leading to a remarkable suppression of RLPS cell proliferation, viability, colony formation, migration, and cell-cycle progression compared to individual drug treatments. At the organoid level, the combination treatment causes the spheroids in Matrigel to disintegrate earlier than the single-drug group. In vivo, RLPS patient-derived xenograft (PDX) models demonstrated that the combination of these two drugs can obviously exert a safe and effective anti-tumor effect. Through transcriptome analysis, we uncovered and validated that the synergistic effect mainly is induced by the endoplasmic reticulum stress (ERS) pathway both in vitro and in vivo. Further analyses indicate that anlotinib plus eribulin treatment results in micro-vessel density and PD-L1 expression alterations, suggesting a potential impact on the tumor microenvironment. This study extensively explored the combination regimen at multiple levels and its underlying molecular mechanism in RLPS, thus providing a foundation for translational medicine research.
Collapse
Affiliation(s)
- Shuquan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongtao Zhang
- Guowen (Changchun) International Hospital, Changchun, Jilin Province, China
| | - Hao Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yifan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jianhui Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
2
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Deacu M, Bosoteanu M, Enciu M, Cozaru GC, Cojocaru O, Baltatescu GI, Nicolau AA, Orasanu CI, Caraban BM, Voda RI. The Predictive Role of the Histopathological Scoring System in Adipose Tumors-Lipoma, Atypical Lipomatous Tumor, and Liposarcoma. Diagnostics (Basel) 2023; 13:3606. [PMID: 38132190 PMCID: PMC10742782 DOI: 10.3390/diagnostics13243606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Lipomatous tumors are the most frequent soft tissue neoplasms. Sometimes their differential diagnosis is difficult to perform only by microscopic analysis. This study aims to create a histopathological scoring system and highlight the impact of intratumoral microvascular density. This study was conducted over 10 years. We analyzed the main pathogenic pathways (MDM2 and CDK4), as well as the tumor microvascularization (CD31 and CD34) by immunohistochemical tests. We also analyzed the status of the MDM2 gene by CISH. These data, together with the clinical and histopathological information, were statistically analyzed by appropriate tests. We identified 112 eligible cases, with most of the patients being in their sixth decade of life, with a slight predominance of the female sex. We found important associations like tumor location linked to nuclear pleomorphism severity and microvascularization density correlated with atypia severity. Also, we observed that a maximum diameter of a tumor of at least 69 mm is associated with the presence of tumor necrosis. The score designed in this study shows an increased sensitivity and specificity for the diagnosis of lipomas (100%, respectively, 97%), atypical lipomatous tumors (93.8%, respectively, 82.3%), and liposarcomas (100%, respectively, 90.5%). This present study enhances the present data by bringing to attention the histopathological score with a role in differential diagnosis, as well as in the prediction of immunohistochemical and genetic tests. Also, we highlighted the importance of microvascular density, especially in the diagnosis of liposarcomas.
Collapse
Affiliation(s)
- Mariana Deacu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
| | - Madalina Bosoteanu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
| | - Manuela Enciu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
- Clinical Service of Pathology, Department of Genetics, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Oana Cojocaru
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
| | - Gabriela Izabela Baltatescu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Anca Antonela Nicolau
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
| | - Bogdan Marian Caraban
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
- Clinical Department of Plastic Surgery, Microsurgery—Reconstructive, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Department of Pathology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania; (M.D.); (M.B.); (M.E.); (O.C.); (G.I.B.); (A.A.N.); (R.I.V.)
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania;
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology (CEDMOG), “Ovidius” University of Constanta, 900591 Constanta, Romania;
| |
Collapse
|
4
|
Ma S, Hu Y, Chen J, Wang X, Zhang C, Liu Q, Cai G, Wang H, Zheng J, Wang Q, Zhong L, Yang B, Zhou S, Liu Y, Han F, Wang J, Wang J. Marine fungus-derived alkaloid inhibits the growth and metastasis of gastric cancer via targeting mTORC1 signaling pathway. Chem Biol Interact 2023; 382:110618. [PMID: 37394161 DOI: 10.1016/j.cbi.2023.110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
Gastric cancer (GC) is a highly aggressive and deadly disease worldwide. Given the limitations of current treatments, it is crucial to discover more effective antitumor drugs. Here, we demonstrated that arthpyrone M (Art-M), a novel 4-hydroxy-2-pyridone alkaloid derived from the marine fungus Arthrinium arundinis, inhibited the proliferation, invasion and migration of GC both in vivo and in vitro. The underlying mechanism of Art-M in GC cells was explored by RNA-sequencing analysis, qRT-PCR and immunoblotting, which demonstrated that Art-M significantly suppressed the mTORC1 pathway by decreasing phosphorylated mTOR and p70S6K. Moreover, Art-M feedback increased the activities of AKT and ERK. Co-immunoprecipitation and immunoblotting analysis revealed that Art-M induced dissociation of Raptor from mTOR and promoted Raptor degradation, leading to the inhibition of mTORC1 activity. Art-M was identified as a novel and potent mTORC1 antagonist. Furthermore, Art-M enhanced GC cell sensitivity to apatinib, and the combination of Art-M and apatinib showed better efficacy in the treatment of GC. Taken together, these results demonstrate that Art-M is a promising candidate drug for the treatment of GC by suppressing the mTORC1 pathway.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yiwei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianjiao Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Xiaojuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No.168, Litang Road, Changping District, Beijing, 102218, China
| | - Chenxi Zhang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Liu
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Guodi Cai
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Jianwei Zheng
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Qianqian Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Shengning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fanghai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.
| | - Junjian Wang
- School of Pharmaceutical Sciences, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/ Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
5
|
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers. Front Oncol 2022; 12:965261. [PMID: 36119484 PMCID: PMC9479065 DOI: 10.3389/fonc.2022.965261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Well differentiated and dedifferentiated liposarcomas (WDLPS and DDLPS) are tumors of the adipose tissue poorly responsive to conventional cytotoxic chemotherapy which currently remains the standard-of-care. The dismal prognosis of the DDLPS subtype indicates an urgent need to identify new therapeutic targets to improve the patient outcome. The amplification of the two driver genes MDM2 and CDK4, shared by WDLPD and DDLPS, has provided the rationale to explore targeting the encoded ubiquitin-protein ligase and cell cycle regulating kinase as a therapeutic approach. Investigation of the genomic landscape of WD/DDLPS and preclinical studies have revealed additional potential targets such as receptor tyrosine kinases, the cell cycle kinase Aurora A, and the nuclear exporter XPO1. While the therapeutic significance of these targets is being investigated in clinical trials, insights into the molecular characteristics associated with dedifferentiation and progression from WDLPS to DDLPS highlighted additional genetic alterations including fusion transcripts generated by chromosomal rearrangements potentially providing new druggable targets (e.g. NTRK, MAP2K6). Recent years have witnessed the increasing use of patient-derived cell and tumor xenograft models which offer valuable tools to accelerate drug repurposing and combination studies. Implementation of integrated "multi-omics" investigations applied to models recapitulating WD/DDLPS genetics, histologic differentiation and biology, will hopefully lead to a better understanding of molecular alterations driving liposarcomagenesis and DDLPS progression, as well as to the identification of new therapies tailored on tumor histology and molecular profile.
Collapse
Affiliation(s)
- Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
- Sarcoma Service, Department of Surgery, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| | - Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
6
|
Xu C, Yan L, An Q, Zhang S, Guan X, Wang Z, Lv A, Liu D, Liu F, Dong B, Zhao M, Tian X, Hao C. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: an ideal model for preclinical study. Int J Med Sci 2022; 19:1241-1253. [PMID: 35928724 PMCID: PMC9346387 DOI: 10.7150/ijms.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiming An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|