1
|
Chen W, Wang F, Yu X, Qi J, Dong H, Cui B, Zhang Q, Wu Y, An J, Ni N, Liu C, Han Y, Zhang S, Schmitt CA, Deng J, Yu Y, Du J. LncRNA MIR31HG fosters stemness malignant features of non-small cell lung cancer via H3K4me1- and H3K27Ace-mediated GLI2 expression. Oncogene 2024; 43:1328-1340. [PMID: 37950038 PMCID: PMC11065682 DOI: 10.1038/s41388-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Non-coding RNAs are responsible for oncogenesis and the development of stemness features, including multidrug resistance and metastasis, in various cancers. Expression of lncRNA MIR31HG in lung cancer tissues and peripheral sera of lung cancer patients were remarkably higher than that of healthy individuals and indicated a poor prognosis. Functional analysis showed that MIR31HG fosters stemness-associated malignant features of non-small cell lung cancer cells. Further mechanistic investigation revealed that MIR31HG modulated GLI2 expression via WDR5/MLL3/P300 complex-mediated H3K4me and H3K27Ace modification. In vivo MIR31HG repression with an antisense oligonucleotide attenuated tumor growth and distal organ metastasis, whereas MIR31HG promotion remarkably encouraged cellular invasion in lung and liver tissues. Our data suggested that MIR31HG is a potential diagnostic indicator and druggable therapeutic target to facilitate multiple strategic treatments for lung cancer patients.
Collapse
Affiliation(s)
- Weiwei Chen
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Fei Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Xinyuan Yu
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jingjing Qi
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria
| | - Hongliang Dong
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Bingjie Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yan Wu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Na Ni
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Yuchen Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Shuo Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China
| | - Clemens A Schmitt
- Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria
- Charité-Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, 13353, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site, Berlin, Germany
| | - Jiong Deng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| | - Yong Yu
- Department of Hematology and Internal Oncology, Johannes Kepler University Linz, Altenbergerstraße 69, 4040, Linz, Austria.
| | - Jing Du
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Oncology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
- Department of Gynecology, Binzhou Medical University Hospital, Binzhou, 256600, PR China.
| |
Collapse
|
2
|
Balážová K, Clevers H, Dost AFM. The role of macrophages in non-small cell lung cancer and advancements in 3D co-cultures. eLife 2023; 12:82998. [PMID: 36809334 PMCID: PMC9943070 DOI: 10.7554/elife.82998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths worldwide. Traditional therapeutic approaches such as chemotherapy or radiotherapy have provided only a marginal improvement in the treatment of lung carcinomas. Inhibitors targeting specific genetic aberrations present in non-small cell lung cancer (NSCLC), the most common subtype (85%), have improved the prognostic outlook, but due to the complexity of the LC mutational spectrum, only a fraction of patients benefit from these targeted molecular therapies. More recently, the realization that the immune infiltrate surrounding solid tumors can foster tumor-promoting inflammation has led to the development and implementation of anticancer immunotherapies in the clinic. In NSCLC, one of the most abundant leukocyte infiltrates is macrophages. These highly plastic phagocytes, which are part of the cellular repertoire of the innate immunity, can have a pivotal role in early NSCLC establishment, malignant progression, and tumor invasion. Emerging macrophage-targeting therapies have been focused on the re-differentiation of the macrophages toward an antitumorigenic phenotype, depletion of tumor-promoting macrophage subtypes, or combination therapies combining traditional cytotoxic treatments with immunotherapeutic agents. The most extensively used models employed for the exploration of NSCLC biology and therapy have been 2D cell lines and murine models. However, studying cancer immunology requires appropriately complex models. 3D platforms, including organoid models, are quickly advancing powerful tools to study immune cell-epithelial cell interactions within the tumor microenvironment. Co-cultures of immune cells along with NSCLC organoids allow for an in vitro observation of the tumor microenvironment dynamics closely resembling in vivo settings. Ultimately, the implementation of 3D organoid technology into tumor microenvironment-modeling platforms might facilitate the exploration of macrophage-targeted therapies in NSCLC immunotherapeutic research, thus establishing a new frontier in NSCLC treatment.
Collapse
Affiliation(s)
- Katarína Balážová
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre UtrechtUtrechtNetherlands,Oncode Institute, Hubrecht Institute-KNAWUtrechtNetherlands
| | - Hans Clevers
- Roche Pharma Research and early DevelopmentBaselSwitzerland
| | - Antonella FM Dost
- Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW & University Medical Centre UtrechtUtrechtNetherlands,Oncode Institute, Hubrecht Institute-KNAWUtrechtNetherlands
| |
Collapse
|
3
|
Chu F, Xu X, Zhang Y, Cai H, Peng J, Li Y, Zhang H, Liu H, Chen X. LIM-domain binding protein 2 was down-regulated by miRNA-96-5p inhibited the proliferation, invasion and metastasis of lung cancer H1299 cells. Clinics (Sao Paulo) 2023; 78:100145. [PMID: 36473369 PMCID: PMC9727592 DOI: 10.1016/j.clinsp.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVES Lung cancer was one of the most common malignancies around the world. It has great significance in to search for the mechanism of occurrence and development of lung cancer. LIM Domain Binding protein 2 (LDB2) belongs to the LIM-domain binding family, it can be used as a binding protein that combined with other transcription factors to form the transcription complex for regulating the expression of target genes. The expression of microRNA-96-5p (miR-96-5p) has been investigated in various tumors. The aim of this study is to investigate the potential role of LDB2 and miR-96-5p in lung cancer. METHODS Real-time quantitative PCR was applied to detect the expression of LDB2 and miR-96-5p. The proliferation, invasion, and metastasis of H1299 cells were analyzed by CCK8, transwell, and wound healing assay after LDB2 or miR-96-5p transfection. Luciferase activities assay and western blot were used to reveal the targeted regulation between LDB2 and miR-96-5p. RESULTS Here the authors found LDB2 was down-regulated in lung cancer tissues and negatively correlated with miR-96-5p expression, it could promote or inhibit the proliferation, invasion and metastasis of H1299 cells after LDB2 knockdown or overexpression and regulate the expression of cyclinD1, MMP9, Bcl-2, and Bax via ERK1/2 signaling pathway. Furthermore, miR-96-5p exerted its function by directly binding to 3'-UTR of LDB2 and regulating expression of LDB2. miR-96-5p could promote the proliferation, invasion, and metastasis of H1299 cells. CONCLUSION These findings demonstrate that LDB2 can act as a new regulator to inhibit cell proliferation, invasion, and metastasis via the ERK1/2 signaling pathway, and miR-96-5p may be a potential promising molecular by targeting LDB2 in lung cancer.
Collapse
Affiliation(s)
- Fuying Chu
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Xinxin Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Yan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Hua Cai
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, China
| | - Jingjing Peng
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Yanan Li
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Han Zhang
- Department of Laboratory Medicine, Nantong First People's Hospital, China
| | - Hongli Liu
- Department of Laboratory Medicine, Nantong Tumor Hospital, China
| | - Xiang Chen
- Department of Laboratory Medicine, Nantong First People's Hospital, China.
| |
Collapse
|
4
|
Lu L, Fang T, Pang T, Chen Z, Cheng L, Ma D, Xi Z. The potential application of branch-PCR assembled PTEN gene nanovector in lung cancer gene therapy. Chembiochem 2022; 23:e202200387. [PMID: 36073901 DOI: 10.1002/cbic.202200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Indexed: 11/12/2022]
Abstract
Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a kind of PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with the biocompatible size (84.7 ± 11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN function through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5% ± 4.6% when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7% and 63.9% compared with the PBS group on the 18 th day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggested the promising therapeutic potential of this branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as the all-in-one gene nanovectors for multiple gene-based cancer gene therapy.
Collapse
Affiliation(s)
- Liqing Lu
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tian Fang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tuo Pang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Ziyi Chen
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Longhuai Cheng
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Dejun Ma
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Zhen Xi
- Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Bi, 94 weijin road, 300071, Tianjin, CHINA
| |
Collapse
|
5
|
Liu Y, Zhao C, Lu Q, Hu Y. The optimal neoadjuvant regimen for nonsmall cell lung cancer: A meta-analysis. Medicine (Baltimore) 2022; 101:e30159. [PMID: 36042672 PMCID: PMC9410656 DOI: 10.1097/md.0000000000030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To compare the efficacy and complications of different neoadjuvant to determine the optimal regimens for nonsmall cell lung cancer (NSCLC) patients. METHODS A systematic search of the Web of Science, and PubMed databases was conducted through June 3, 2021, reporting a comparison of chemotherapy, chemoradiotherapy, and immunotherapy. RESULTS Of 3462 studies, 25 were considered for evidence synthesis. 1035 patients who received chemotherapy or radiotherapy before surgery did not prolong the overall survival (OS) compared with 1038 patients who received surgery alone (hazard ratio [HR] 1.13, 95% CI 1·00-1·28, P = 0·05). 1192 patients received chemoradiotherapy and 864 patients received chemotherapy or radiotherapy; chemoradiotherapy prolonged the OS compared with chemotherapy (HR 0.52, 95% CI 0·29 to 0.95, P = .03). Compared with 110 patients who received other therapy, 93 patients who received immunotherapy had prolonged the OS (HR 1.56, 95% CI 1·08-2·25, P = .02). Chemoradiotherapy increased the pathological response rate (HR 1.68, 95% CI 1·33-2·12, P < .0001), and grade 3 and 4 adverse effects were not increased (HR 5.90, 95% CI 0.88 to 39.60, P = .007). Immunotherapy increased the pathological response (HR 2.79, 95% CI 1·71-4·54, P < .0001), with no significant effects on grades 3 and 4 adverse(HR 0.71, 95% CI 0·19-2·64, P = .61). CONCLUSION Our data showed that chemotherapy may prolong OS and PFS, but not statistically significant; however, the combination of chemotherapy and radiation did show an advantage, and immunotherapy may be also the choice for neoadjuvant therapy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, The People’s Hospital of Yichun City, Jiangxi, 336028, China
| | - Chong Zhao
- Department of Respiratory, The People’s Hospital of Yichun City, Jiangxi, 336028, China
| | - Qiuliang Lu
- Department of Thoracic Surgery, The People’s Hospital of Yichun City, Jiangxi, 336028, China
| | - Yirong Hu
- Department of Neurology, The People’s Hospital of Yichun City, Jiangxi, 336028, China
- *Correspondence: Yirong Hu, No 88, Zhongshan Western Road, Yichun, Jiangxi 336028, China (e-mail: )
| |
Collapse
|
6
|
Chen S, Qiao Y, Chen J, Li Y, Xie J, Cui P, Huang Z, Huang D, Gao Y, Hu Y, Liu Z. Evolutions in the management of non-small cell lung cancer: A bibliometric study from the 100 most impactful articles in the field. Front Oncol 2022; 12:939838. [PMID: 36059661 PMCID: PMC9428518 DOI: 10.3389/fonc.2022.939838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Objective The study was designed to explore the evolution of non-small cell lung cancer (NSCLC) management in the last 20 years. Methods The top 100 most-cited papers on NSCLC treatment were retrieved from the Web of Science Core Collection database. R and VOSviewer were used to extract bibliographic information, including the year of publication, countries/regions, institutions, authors, journals, keywords, impact factor, and total citations. The topic and type of papers were checked independently by authors. Bibliometric analysis was conducted and visualized with R, CiteSpace, Excel and VOSviewer to identify output dynamics, research forces, topics, hotspots, and frontiers in the field. Results The average citation of each retrieved top 100 most-cited NSCLC management papers was 1,725 (range: 615-7,340). Fifty-seven corresponding authors were from the United States. This country contributed the most papers (n=76), followed by Germany (n=34), France (n=33), and South Korea (n=32). The top contributors were Paz-Ares L. (n=12) and Reck M. (n=12). The Memorial Sloan Kettering Cancer Center published the largest number of papers (n=20). There were two significant citation paths, indicating publications in medicine/medical/clinical journals primarily cited journals in molecular/biology/genetics fields, partly cited health/nursing/medicine fields. Top-cited papers mainly came from the New England Journal of Medicine (n=33, citations=80,427), followed closely by the Journal of Clinical Oncology (n=28, citations=32,408). “Chemotherapy” (n=36) was the keyword with the greatest frequency of co-occurrence. “Open-label” was the keyword with the strongest burst strength (=4.01), followed by “nivolumab” (=3.85), “blockade” (=2.86), and “efficacy” (=2.85). Conclusions The United States as a nation and the Memorial Sloan Kettering Cancer Center as an institute contributed the most to this field. The New England Journal of Medicine is the most eye-catching journal. Hotspots of NSCLC management have almost undergone an evolution from chemotherapy and radiotherapy to targeted therapy to immunotherapy. Molecular/biological/genetic fields become the main research base for NSCLC treatment. Immunotherapy and combination therapy are research frontiers.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yu Qiao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Juan Chen
- School of Nursing, Yangzhou University, Yangzhou, China
| | - Yanan Li
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Jianlian Xie
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pengfei Cui
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Ziwei Huang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiming Gao
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhefeng Liu, ; Yi Hu,
| | - Zhefeng Liu
- Department of Medical Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- *Correspondence: Zhefeng Liu, ; Yi Hu,
| |
Collapse
|