1
|
Zhao X, Cui H, Zhou M, Ren X, Li Z, Liu P, Zhao D, Lin S, Kang H. A novel glycogene-related signature for prognostic prediction and immune microenvironment assessment in kidney renal clear cell carcinoma. Ann Med 2025; 57:2495762. [PMID: 40329678 PMCID: PMC12064129 DOI: 10.1080/07853890.2025.2495762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Kidney Renal Clear Cell Carcinoma (KIRC) is a prevalent urinary malignancies worldwide. Glycosylation is a key post-translational modification that is essential in cancer progression. However, its relationship with prognosis, tumour microenvironment (TME), and treatment response in KIRC remains unclear. METHOD Expression profiles and clinical data were retrieved from The Cancer Genome Atlas and Gene Expression Omnibus databases. Consensus clustering, Cox regression, and LASSO regression analyses were conducted to develop an optimal glycogene-related signature. The prognostic relevance of this molecular signature was rigorously analyzed, along with its connections to tumour microenvironment (TME), tumour mutation burden, immune checkpoint activity, cancer-immunity cycle regulation, immunomodulatory gene expression patterns, and therapeutic response profiles. Validation was performed using real-world clinical specimens, quantitative PCR (qPCR), and immunohistochemistry (IHC), supported by cohort analyses from the Human Protein Atlas (HPA) database. RESULTS A glycogene-associated prognostic scoring system was established to categorize patients into risk-stratified subgroups. Patients in the high-risk cohort exhibited significantly poorer survival outcomes (p < 0.001). By incorporating clinicopathological variables into this framework, we established a predictive nomogram demonstrating strong calibration and a concordance index (C-index) of 0.78. The high-risk subgroup displayed elevated immune infiltration scores (p < 0.001), upregulated expression of immune checkpoint-related genes (p < 0.05), and an increased frequency of somatic mutations (p = 0.043). The risk score positively correlated with cancer-immunity cycle activation and immunotherapy-related signals. The high-risk groups also showed associations with T cell exhaustion, immune-activating genes, chemokines, and receptors. Drug sensitivity analysis revealed that low-risk patients were more sensitive to sorafenib, pazopanib, and erlotinib, whereas high-risk individuals responded better to temsirolimus (p < 0.01). qPCR and IHC analyses consistently revealed distinct expression patterns of MX2 and other key genes across the risk groups, further corroborated by the HPA findings. CONCLUSION This glycogene-based signature provides a robust tool for predicting prognosis, TME characteristics, and therapeutic responses in KIRC, offering potential clinical utility in patient management.
Collapse
Affiliation(s)
- Xuyan Zhao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hanxiao Cui
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingjing Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xueting Ren
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zihao Li
- Department of Urology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peinan Liu
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Danni Zhao
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shuai Lin
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huafeng Kang
- The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Lee SH, Khoo ASB, Griffiths JR, Mat Lazim N. Metabolic regulation of the tumour and its microenvironment: The role of Epstein-Barr virus. Int J Cancer 2025; 156:488-498. [PMID: 39291683 DOI: 10.1002/ijc.35192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The Epstein-Barr virus (EBV), the first identified human tumour virus, infects over 95% of the individuals globally and has the potential to induce different types of cancers. It is increasingly recognised that EBV infection not only alters cellular metabolism, contributing to neoplastic transformation, but also utilises several non-cell autonomous mechanisms to shape the metabolic milieu in the tumour microenvironment (TME) and its constituent stromal and immune cells. In this review, we explore how EBV modulates metabolism to shape the interactions between cancer cells, stromal cells, and immune cells within a hypoxic and acidic TME. We highlight how metabolites resulting from EBV infection act as paracrine factors to regulate the TME, and how targeting them can disrupt barriers to immunotherapy.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
3
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Liu Q, Xu J, Dai B, Guo D, Sun C, Du X. Single-cell resolution profiling of the immune microenvironment in primary and metastatic nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2024; 150:391. [PMID: 39158776 PMCID: PMC11333513 DOI: 10.1007/s00432-024-05900-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is an assertive malignancy with partially understood underlying mechanisms, urging further study into its diverse and dynamic tumor microenvironment (TME) to bolster diagnosis, treatment, and prognostic accuracy. AIMS To track the evolutionary route of metastasis, here we perform a yielding scRNA-seq data from 24 primary carcinoma, 7 peripheral blood mononuclear cell (PBMC) nasopharyngeal carcinoma, and 7 metastatic carcinoma patients' sample. MATERIALS AND METHODS Following high quality control and filtration, a total of 292,298 cells from these tumors were classified into 10 clusters: T cells, B cells, Macrophages/Monocytes, Natural Killer (NK) cells, Plasma cells, plasmacytoid Dendritic Cells, Migratory Dendritic Cells, Mast cells, Cancer-Associated Fibroblasts, and Epithelial cells. RESULTS By comparing and analyzing the different functional capacities of cellular entities within primary and metastatic nasopharyngeal carcinoma, coupled with a detailed investigation into the heterogeneity and differential fate trajectories of T cells, B cells, and myeloid cells, as well as assessing the interactions of cell-cell communicative heterogeneity between these carcinogenic states, we established single-cell atlases for primary and metastatic tumors and identified a large number of potential therapeutic targets. CONCLUSION This comprehensive analysis significantly advances our understanding of nasopharyngeal carcinoma (NPC) metastasis by detailing the evolutionary dynamics and the impact of the tumor microenvironment at a single-cell resolution, thereby laying a crucial foundation for future metastatic tumor research and providing new insights into immune heterogeneity, molecular interactions, and potential therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Qiuping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Jingping Xu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, People's Republic of China
| | - Bingyi Dai
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Danni Guo
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Changling Sun
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Xiaodong Du
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
5
|
Zeng S, Li X, Liu Y, Huang Q, He Y. Automatic Annotation Diagnostic Framework for Nasopharyngeal Carcinoma via Pathology-Fidelity GAN and Prior-Driven Classification. Bioengineering (Basel) 2024; 11:739. [PMID: 39061821 PMCID: PMC11273917 DOI: 10.3390/bioengineering11070739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Non-keratinizing carcinoma is the most common subtype of nasopharyngeal carcinoma (NPC). Its poorly differentiated tumor cells and complex microenvironment present challenges to pathological diagnosis. AI-based pathological models have demonstrated potential in diagnosing NPC, but the reliance on costly manual annotation hinders development. To address the challenges, this paper proposes a deep learning-based framework for diagnosing NPC without manual annotation. The framework includes a novel unpaired generative network and a prior-driven image classification system. With pathology-fidelity constraints, the generative network achieves accurate digital staining from H&E to EBER images. The classification system leverages staining specificity and pathological prior knowledge to annotate training data automatically and to classify images for NPC diagnosis. This work used 232 cases for study. The experimental results show that the classification system reached a 99.59% accuracy in classifying EBER images, which closely matched the diagnostic results of pathologists. Utilizing PF-GAN as the backbone of the framework, the system attained a specificity of 0.8826 in generating EBER images, markedly outperforming that of other GANs (0.6137, 0.5815). Furthermore, the F1-Score of the framework for patch level diagnosis was 0.9143, exceeding those of fully supervised models (0.9103, 0.8777). To further validate its clinical efficacy, the framework was compared with experienced pathologists at the WSI level, showing comparable NPC diagnosis performance. This low-cost and precise diagnostic framework optimizes the early pathological diagnosis method for NPC and provides an innovative strategic direction for AI-based cancer diagnosis.
Collapse
Affiliation(s)
- Siqi Zeng
- Medical Optical Technology R&D Center, Research Institute of Tsinghua, Pearl River Delta, Guangzhou 510700, China;
| | - Xinwei Li
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China;
| | - Yiqing Liu
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| | - Qiang Huang
- Shenzhen Shengqiang Technology Co., Ltd., Shenzhen 518055, China;
| | - Yonghong He
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China;
| |
Collapse
|
6
|
Wu Y, Jia Q, Tang Q, Chen L, Deng H, He Y, Tang F. A specific super-enhancer actuated by berberine regulates EGFR-mediated RAS-RAF1-MEK1/2-ERK1/2 pathway to induce nasopharyngeal carcinoma autophagy. Cell Mol Biol Lett 2024; 29:92. [PMID: 38943090 PMCID: PMC11214260 DOI: 10.1186/s11658-024-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC), primarily found in the southern region of China, is a malignant tumor known for its highly metastatic characteristics. The high mortality rates caused by the distant metastasis and disease recurrence remain unsolved clinical problems. In clinic, the berberine (BBR) compound has widely been in NPC therapy to decrease metastasis and disease recurrence, and BBR was documented as a main component with multiple anti-NPC effects. However, the mechanism by which BBR inhibits the growth and metastasis of nasopharyngeal carcinoma remains elusive. Herein, we show that BBR effectively inhibits the growth, metastasis, and invasion of NPC via inducing a specific super enhancer (SE). From a mechanistic perspective, the RNA sequencing (RNA-seq) results suggest that the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway, activated by the epidermal growth factor receptor (EGFR), plays a significant role in BBR-induced autophagy in NPC. Blockading of autophagy markedly attenuated the effect of BBR-mediated NPC cell growth and metastasis inhibition. Notably, BBR increased the expression of EGFR by transcription, and knockout of EGFR significantly inhibited BBR-induced microtubule associated protein 1 light chain 3 (LC3)-II increase and p62 inhibition, proposing that EGFR plays a pivotal role in BBR-induced autophagy in NPC. Chromatin immunoprecipitation sequencing (ChIP-seq) results found that a specific SE existed only in NPC cells treated with BBR. This SE knockdown markedly repressed the expression of EGFR and phosphorylated EGFR (EGFR-p) and reversed the inhibition of BBR on NPC proliferation, metastasis, and invasion. Furthermore, BBR-specific SE may trigger autophagy by enhancing EGFR gene transcription, thereby upregulating the RAS-RAF1-MEK1/2-ERK1/2 signaling pathway. In addition, in vivo BBR effectively inhibited NPC cells growth and metastasis, following an increase LC3 and EGFR and a decrease p62. Collectively, this study identifies a novel BBR-special SE and established a new epigenetic paradigm, by which BBR regulates autophagy, inhibits proliferation, metastasis, and invasion. It provides a rationale for BBR application as the treatment regime in NPC therapy in future.
Collapse
Affiliation(s)
- Yao Wu
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Qunying Jia
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Qi Tang
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Lin Chen
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Hongyu Deng
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China
| | - Yingchun He
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene and Clinical Laboratory, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha, 410013, China.
- The First Clinical College of Traditional Chinese Medicine of Hunan University of Chinese Medicine, and Hunan Cancer Hospital, Changsha, 410007, China.
| |
Collapse
|
7
|
Lu X, Mei Y, Fan C, Chen P, Li X, Zeng Z, Li G, Xiong W, Xiang B, Yi M. Silencing AHNAK promotes nasopharyngeal carcinoma progression by upregulating the ANXA2 protein. Cell Oncol (Dordr) 2024; 47:833-850. [PMID: 37962808 DOI: 10.1007/s13402-023-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE Nasopharyngeal carcinoma (NPC) is an aggressive head and neck disease with a high incidence of distant metastases. Enlargeosomes are cytoplasmic organelles marked by, desmoyokin/AHNAK. This study aimed to evaluate the expression of AHNAK in NPC and its effect on enlargeosomes and to investigate the correlation between AHNAK expression levels and clinical NPC patient characteristics. METHODS Primary nasopharyngeal carcinoma (NPC) and NPC specimens were evaluated by analyzing public data, and immunohistochemistry. Systematic in vitro and in vivo experiments were performed using different NPC-derived cell lines and mouse models. RESULTS In this study, we detected AHNAK and Annexin A2(ANXA2), a protein coating the surface of enlargeosomes, in NPC samples. We found that AHNAK was down-regulated. Down-regulation of AHNAK was associated with poor overall survival in NPC patients. Moreover, transcription factor FOSL1-mediated transcriptional repression was responsible for the low expression of AHNAK by recruiting EZH2. Whereas Annexin A2 was upregulated in human NPC tissues. Upregulation of Annexin A2 was associated with lymph node metastasis and distant metastasis in NPC patients. Functional studies confirmed that silencing of AHNAK enhanced the growth, invasion, and metastatic properties of NPC cells both in vitro and in vivo. In terms of mechanism, loss of AHNAK led to an increase of annexin A2 protein level in NPC cells. Silencing ANXA2 restored NPC cells' migrative and invasive ability upon loss of AHNAK. CONCLUSION Here, we report AHNAK as a tumor suppressor in NPC, which may act through annexin A2 oncogenic signaling in enlargeosome, with potential implications for novel approaches to NPC treatment.
Collapse
Affiliation(s)
- Xingxing Lu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yan Mei
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Nagato T, Komatsuda H, Hayashi R, Takahara M, Ujiie N, Kosaka A, Ohkuri T, Oikawa K, Sato R, Wakisaka R, Kono M, Yamaki H, Ohara K, Kumai T, Kishibe K, Katada A, Hayashi T, Kobayashi H. Soluble CD27 as a predictive biomarker for intra-tumoral CD70/CD27 interaction in nasopharyngeal carcinoma. Cancer Sci 2024; 115:1073-1084. [PMID: 38279834 PMCID: PMC11007004 DOI: 10.1111/cas.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/29/2024] Open
Abstract
In CD70-expressing tumors, the interaction of CD70 on tumor cells with its lymphocyte receptor, CD27, is thought to play a role in immunosuppression in the tumor microenvironment and elevated serum levels of soluble CD27 (sCD27). Previous studies showed that CD70 is expressed in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related malignancy. However, the association between intratumoral CD70/CD27 expression and serum levels of sCD27 in NPC remains unclear. In the present study, we show that CD70 is primarily expressed by tumor cells in NPC and that CD27-positive lymphocytes infiltrate around tumor cells. NPC patients with CD27-positive lymphocytes had significantly better prognosis than patients lacking these cells. In addition, high CD70 expression by tumor cells tended to be correlated with shorter survival in NPC patients with CD27-positive lymphocytes. Serum sCD27 levels were significantly increased in patients with NPC and provided good diagnostic accuracy for discriminating patients from healthy individuals. The concentration of serum sCD27 in patients with CD70-positive NPC with CD27-positive lymphocytes was significantly higher than in patients with tumors negative for CD70 and/or CD27, indicating that the intratumoral CD70/CD27 interaction boosts the release of sCD27. Furthermore, positive expression of CD70 by NPC cells was significantly correlated with EBV infection. Our results suggest that CD70/CD27-targeted immunotherapies may be promising treatment options and that sCD27 may become an essential tool for evaluating the applicability of these therapies by predicting the intratumoral CD70/CD27 interaction in NPC.
Collapse
Affiliation(s)
- Toshihiro Nagato
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroki Komatsuda
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Ryusuke Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Miki Takahara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Nanami Ujiie
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
- Department of Thoracic Surgery and Breast SurgeryAsahikawa Medical University HospitalAsahikawaJapan
| | - Akemi Kosaka
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Takayuki Ohkuri
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kensuke Oikawa
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Sato
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Risa Wakisaka
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Michihisa Kono
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hidekiyo Yamaki
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Kenzo Ohara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Takumi Kumai
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
- Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Kan Kishibe
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Akihiro Katada
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Tatsuya Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroya Kobayashi
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
9
|
Wang Q, Yu Q, Liu Y. E2F1-EP300 co-activator complex potentiates immune escape in nasopharyngeal carcinoma through the mediation of MELK. Histol Histopathol 2024; 39:511-523. [PMID: 37728155 DOI: 10.14670/hh-18-662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is characterized by a highly suppressive microenvironment that protects tumor cells against immune attack and facilitates tumor progression. MELK is upregulated in various tumors, whereas its function in the immune escape remains largely unknown. In this study, we investigated the role of MELK during immune escape in NPC. METHODS Differentially expressed genes were filtered using GEO datasets and PPI network analysis. NPC cell colony formation and motility were examined, and the impact of CD8⁺ T cells on NPC cells was evaluated. A xenograft model was constructed to detect the growth of tumor cells and the T-cell phenotype of tumor infiltration. ChIP-qPCR and dual-luciferase assays were used to verify the transcriptional regulation of MELK by EP300/E2F1. FINDINGS MELK was overexpressed in NPC, and sh-MELK suppressed the clonogenic ability, migration, and invasion of NPC cells and promoted the killing effects of CD8⁺ T cells. These in vitro findings were reproduced in vivo. EP300 synergized E2F1 to regulate the transcription of MELK in NPC cells. Loss of EP300 or E2F1 reverted the malignant phenotype of NPC cells and promoted the immune effect of CD8⁺ T cells. MELK further suppressed the immune effect of CD8⁺ T cells in the presence of sh-E2F1. INTERPRETATION EP300 coordinated with E2F1 to promote the transcription of MELK which promoted the growth of NPC cells and repressed the killing effect of CD8⁺ T cells. Blockage of MELK may be a potential way to suppress the immune escape of NPC cells.
Collapse
Affiliation(s)
- Qiang Wang
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Qi Yu
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, PR China
| | - Yueyang Liu
- Otolaryngology and Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
10
|
Marin MA, Closca RM, Marin A, Rakitovan M, Nicoara A, Poenaru M, Militaru M, Baderca F. Clinical, Epidemiological, Morphological, and Immunohistochemical Aspects of Nasopharyngeal Carcinoma-4-Year Retrospective Study in the Western Part of Romania. Diagnostics (Basel) 2024; 14:722. [PMID: 38611634 PMCID: PMC11012000 DOI: 10.3390/diagnostics14070722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Nasopharyngeal carcinoma is one of the most common malignant tumors in the head and neck region. The carcinogenesis is a complex process stimulated by many factors. Although the etiological factors and pathogenic mechanisms are not elucidated, the genetic susceptibility, environmental factors, and association with latent infection with Epstein-Barr Virus play an important role. The aim of this study was to present the main clinical and epidemiological data, as well as the morphological aspects and the immunohistochemical profile, of patients with nasopharyngeal carcinoma diagnosed in western Romania. The study was retrospective and included 36 nasopharyngeal carcinomas. The histopathological diagnosis was completed using immunohistochemical reactions for the following antibodies: p63, p53 and p16 protein, cytokeratins (CK) AE1/AE3, CK5, CK7, CK20 and 34βE12, epithelial membrane antigen (EMA), Epstein-Barr virus (EBV), leukocyte common antigen (LCA), CD20, CD4, CD8, CD68, CD117, and CD1a. The squamous malignant component of nasopharyngeal carcinoma presented with positivity for cytokeratins AE1/AE3, CK5, 34βE12, and p63. Undifferentiated nasopharyngeal carcinoma was positive for EMA in 67% of cases, and 28% of cases showed an immunoreaction for CD117 in the malignant epithelial component. Also, the p53 protein was positive in all the cases. One case of undifferentiated nasopharyngeal carcinoma was p16-positive, and two cases were positive for EBV. A peri- and intratumor cellular infiltrate rich in lymphocytes, with a predominance of CD20-positive B lymphocytes, interspersed with T lymphocytes, was observed. The T cells were CD4- and CD8-positive, predominantly intratumoral, and the CD4:CD8 ratio was 1:1 for 75% of the undifferentiated subtype and 89% for differentiated non-keratinized squamous cell carcinoma. All subtypes of nasopharyngeal carcinoma presented with an inflammatory infiltrate with numerous plasma cells, eosinophils, and dendritic cells, presenting as antigen CD1a- and CD68-positive, as well as in CD117-positive mast cells.
Collapse
Affiliation(s)
- Maria Alina Marin
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (M.A.M.); (M.P.)
- ENT Department, Emergency City Hospital, 400139 Cluj-Napoca, Romania
| | - Raluca-Maria Closca
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (M.R.); (F.B.)
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania
| | - Aurel Marin
- ENT Department, Emergency Pediatric Hospital, 400001 Cluj-Napoca, Romania;
| | - Marina Rakitovan
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (M.R.); (F.B.)
- Oro-Maxillo-Facial Surgery Clinic, Emergency City Hospital, 300062 Timisoara, Romania;
| | - Adrian Nicoara
- Oro-Maxillo-Facial Surgery Clinic, Emergency City Hospital, 300062 Timisoara, Romania;
- Discipline of Dentoalveolar Surgery, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania
| | - Marioara Poenaru
- ENT Department, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (M.A.M.); (M.P.)
- ENT Department, Emergency City Hospital, 300254 Timisoara, Romania
| | - Marius Militaru
- Department of Neuroscience, Discipline of Neurology II, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania;
| | - Flavia Baderca
- Department of Microscopic Morphology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania; (M.R.); (F.B.)
- Department of Pathology, Emergency City Hospital, 300254 Timisoara, Romania
| |
Collapse
|
11
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
12
|
Topkan E, Selek U, Ozturk D, Şenyürek Ş, Kılıç Durankuş N. Prognostic Value of Pre-Chemoradiotherapy Pan-Immune-Inflammation Value (PIV) in Locally Advanced Nasopharyngeal Cancers. Cancer Control 2024; 31:10732748241290746. [PMID: 39361825 PMCID: PMC11452856 DOI: 10.1177/10732748241290746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND To examine the prognostic relevance of pan-immune-inflammation value (PIV) in locally advanced nasopharyngeal carcinomas (LA-NPC) patients treated with concurrent chemoradiotherapy (CCRT) definitively. METHODS We used receiver operating characteristic (ROC) curve analysis to determine an optimal PIV cutoff that could effectively divide the patient cohort into two distinct groups based on distant metastasis-free (DMFS) and overall survival (OS) results. For this purpose, receiver operating characteristic (ROC) curve analysis was employed. Our primary and secondary endpoints were to investigate the potential correlations between pre-CCRT PIV measurements and post-CCRT OS and DMFS outcomes, respectively. RESULTS This retrospective cohort study included 179 LA-NPC patients. The optimal PIV cutoff was 512 (area under the curve: 74.0%; sensitivity: 70.8%, specificity: 68.6%; J-index: 0.394) in ROC curve analysis, creating two patient groups: Group-1: PIV < 512 (N = 108); vs Group-2: PIV ≥ 512 (N = 71). In the comparative analysis, although there were no significant differences between the two groups regarding the patient, disease, and treatment characteristics, the PIV ≥ 512 group had significantly poorer median OS [74.0 months vs not reached yet (NR); HR: 2.81; P < 0.001] and DMFS (27.0 months vs NR; HR: 3.23; P < 0.001) than the PIV < 512 group. Apart from PIV ≥ 512, the N2-3 nodal stage and ≥ 5% weight loss within the preceding 6 months were significant predictors of unfavorable outcomes for DMFS (P < 0.05 for each) and OS (P < 0.05 for each) in univariate analyses. The results of the multivariate analysis showed that each of the three variables had independent negative impacts on both DMFS and OS outcomes (P < 0.05 for each). CONCLUSIONS The present findings indicate that PIV, which classifies these patients into two groups with significantly different DMFS and OS, might be a potent prognostic biological marker for LA-NPC patients.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Duriye Ozturk
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | - Şükran Şenyürek
- Department of Radiation Oncology, Koc University School of Medicine, Istanbul, Turkey
| | | |
Collapse
|
13
|
Zou Z, Li R, Huang X, Chen M, Tan J, Wu M. Identification and validation of immune-related methylated genes as diagnostic and prognostic biomarkers of nasopharyngeal carcinoma. Head Neck 2024; 46:192-211. [PMID: 37929674 DOI: 10.1002/hed.27569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a common malignancy occurring in the head and neck. Identification of immune-related methylated biomarkers might be helpful for NPC detection and prognostic evaluation. METHODS A co-methylation network based on WGCNA was constructed to identify modules associated with NPC and immune cells. In combination with differentially expressed genes (DEGs) and immune-related genes from ImmPort database, the candidate immune-related methylated genes (IRMGs) were obtained. RESULTS Our combined analysis identified 12 IRMGs. Among them, both the methylation and mRNA expression of CCL28, CSK, and PRKCB were correlated with the infiltration of B cells. CD1D, CR2, and GDF10 were favorable markers. Demethylation experiments validated that downregulation of GDF10, PRKCB, SLC40A1, and TGFBR3 in NPC resulted from promoter hypermethylation. Additionally, a diagnostic model was developed and exhibited high discriminative accuracy. CONCLUSIONS These results provided a group of immune-related methylated biomarkers that may help with the diagnosis and prognosis of NPC.
Collapse
Affiliation(s)
- Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Xueshan Huang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Mei Chen
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Jingyi Tan
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Minhua Wu
- School of Basic Medicine, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
Looi CK, Foong LC, Chung FFL, Khoo ASB, Loo EM, Leong CO, Mai CW. Targeting the crosstalk of epigenetic modifications and immune evasion in nasopharyngeal cancer. Cell Biol Toxicol 2023; 39:2501-2526. [PMID: 37755585 DOI: 10.1007/s10565-023-09830-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck cancer that is highly associated with Epstein-Barr virus (EBV) infection. EBV acts as an epigenetic driver in NPC tumorigenesis, reprogramming the viral and host epigenomes to regulate viral latent gene expression, and creating an environment conducive to the malignant transformation of nasopharyngeal epithelial cells. Targeting epigenetic mechanisms in pre-clinical studies has been shown promise in eradicating tumours and overcoming immune resistance in some solid tumours. However, its efficacy in NPC remains inclusive due to the complex nature of this cancer. In this review, we provide an updated understanding of the roles of epigenetic factors in regulating EBV latent gene expression and promoting NPC progression. We also explore the crosstalk between epigenetic mechanisms and immune evasion in NPC. Particularly, we discuss the potential roles of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors in reversing immune suppression and augmenting antitumour immunity. Furthermore, we highlight the advantages of combining epigenetic therapy and immune checkpoint inhibitor to reverse immune resistance and improve clinical outcomes. Epigenetic drugs have the potential to modulate both epigenetic mediators and immune factors involved in NPC. However, further research is needed to fully comprehend the diverse range of epigenetic modifications in NPC. A deeper understanding of the crosstalk between epigenetic mechanisms and immune evasion during NPC progression is crucial for the development of more effective treatments for this challenging disease.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Alan Soo-Beng Khoo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Pennsylvania, PA, 19107, USA
| | - Ee-Mun Loo
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Development, and Innovation (IRDI), Institute for Research, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Pudong New District, Shanghai, 200127, China.
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Liu G, Wang J, Han M, Li X, Zhou L, Dou T, Liu Y, HuangFu M, Guan X, Wang Y, Tang W, Liu Z, Li L, Ding H, Chen X. RNA-binding domain 2 of nucleolin is important for the autophagy induction of curcumol in nasopharyngeal carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154833. [PMID: 37137203 DOI: 10.1016/j.phymed.2023.154833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND & AIMS Excessive autophagy induces cell death and is regarded as the treatment of cancer therapy. We have confirmed that the anti-cancer mechanism of curcumol is related to autophagy induction. As the main target protein of curcumol, RNA binding protein nucleolin (NCL) interacted with many tumor promoters accelerating tumor progression. However, the role of NCL in cancer autophagy and in curcumol's anti-tumor effects haven't elucidated. The purpose of the study is to identify the role of NCL in nasopharyngeal carcinoma autophagy and reveal the immanent mechanisms of NCL played in cell autophagy. METHODS & RESULTS In the current study, we have found that NCL was markedly upregulated in nasopharyngeal carcinoma (NPC) cells. NCL overexpression effectively attenuated the level of autophagy in NPC cells, and NCL silence or curcumol treatment obviously aggravated the autophagy of NPC cells. Moreover, the attenuation of NCL by curcumol lead a significant suppression on PI3K/AKT/mTOR signaling pathway in NPC cells. Mechanistically, NCL was found to be directly interact with AKT and accelerate AKT phosphorylation, which caused the activation of the PI3K/AKT/mTOR pathway. Meanwhile, the RNA Binding Domain (RBD) 2 of NCL interacts with Akt, which was also influenced by curcumol. Notably, the RBDs of NCL delivered AKT expression was related with cell autophagy in the NPC. CONCLUSION The results demonstrated that NCL regulated cell autophagy was related with interaction of NCL and Akt in NPC cells. The expression of NCL play an important role in autophagy induction and further found that was associated with its effect on NCL RNA-binding domain 2. This study may provide a new perspective on the target protein studies for natural medicines and confirm the effect of curcumol not only regulating the expression of its target protein, but also influencing the function domain of its target protein.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Juan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Pharmacognosy, 541199, PR China; Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, 541001, PR China; Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, the Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi, PR China; Faculty of Basic Medicine, Guilin Medical University, No. 109, 541004 Guilin, PR China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Tong Dou
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Mengjie HuangFu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xiao Guan
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Yan Wang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Wei Tang
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Zhangchi Liu
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Linjun Li
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Hongfang Ding
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, 541199 Guilin, PR China.
| |
Collapse
|
16
|
Gong L, Luo J, Zhang Y, Yang Y, Li S, Fang X, Zhang B, Huang J, Chow LKY, Chung D, Huang J, Huang C, Liu Q, Bai L, Tiu YC, Wu P, Wang Y, Tsao GSW, Kwong DLW, Lee AWM, Dai W, Guan XY. Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction. Nat Commun 2023; 14:1912. [PMID: 37024479 PMCID: PMC10079957 DOI: 10.1038/s41467-023-37614-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Despite the intense CD8+ T-cell infiltration in the tumor microenvironment of nasopharyngeal carcinoma, anti-PD-1 immunotherapy shows an unsatisfactory response rate in clinical trials, hindered by immunosuppressive signals. To understand how microenvironmental characteristics alter immune homeostasis and limit immunotherapy efficacy in nasopharyngeal carcinoma, here we establish a multi-center single-cell cohort based on public data, containing 357,206 cells from 50 patient samples. We reveal that nasopharyngeal carcinoma cells enhance development and suppressive activity of regulatory T cells via CD70-CD27 interaction. CD70 blocking reverts Treg-mediated suppression and thus reinvigorate CD8+ T-cell immunity. Anti-CD70+ anti-PD-1 therapy is evaluated in xenograft-derived organoids and humanized mice, exhibiting an improved tumor-killing efficacy. Mechanistically, CD70 knockout inhibits a collective lipid signaling network in CD4+ naïve and regulatory T cells involving mitochondrial integrity, cholesterol homeostasis, and fatty acid metabolism. Furthermore, ATAC-Seq delineates that CD70 is transcriptionally upregulated by NFKB2 via an Epstein-Barr virus-dependent epigenetic modification. Our findings identify CD70+ nasopharyngeal carcinoma cells as a metabolic switch that enforces the lipid-driven development, functional specialization and homeostasis of Tregs, leading to immune evasion. This study also demonstrates that CD70 blockade can act synergistically with anti-PD-1 treatment to reinvigorate T-cell immunity against nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shanshan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaona Fang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dittman Chung
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cuicui Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qin Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lu Bai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuen Chak Tiu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pingan Wu
- Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Wang
- Department of Pathology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - George Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anne Wing-Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| |
Collapse
|
17
|
Perri F, Sabbatino F, Ottaiano A, Fusco R, Caraglia M, Cascella M, Longo F, Rega RA, Salzano G, Pontone M, Marciano ML, Piccirillo A, Montano M, Fasano M, Ciardiello F, Della Vittoria Scarpati G, Ionna F. Impact of Epstein Barr Virus Infection on Treatment Opportunities in Patients with Nasopharyngeal Cancer. Cancers (Basel) 2023; 15:1626. [PMID: 36900413 PMCID: PMC10000842 DOI: 10.3390/cancers15051626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Chemical, physical, and infectious agents may induce carcinogenesis, and in the latter case, viruses are involved in most cases. The occurrence of virus-induced carcinogenesis is a complex process caused by an interaction across multiple genes, mainly depending by the type of the virus. Molecular mechanisms at the basis of viral carcinogenesis, mainly suggest the involvement of a dysregulation of the cell cycle. Among the virus-inducing carcinogenesis, Epstein Barr Virus (EBV) plays a major role in the development of both hematological and oncological malignancies and importantly, several lines of evidence demonstrated that nasopharyngeal carcinoma (NPC) is consistently associated with EBV infection. Cancerogenesis in NPC may be induced by the activation of different EBV "oncoproteins" which are produced during the so called "latency phase" of EBV in the host cells. Moreover, EBV presence in NPC does affect the tumor microenvironment (TME) leading to a strongly immunosuppressed status. Translational implications of the above-mentioned statements are that EBV-infected NPC cells can express proteins potentially recognized by immune cells in order to elicit a host immune response (tumor associated antigens). Three immunotherapeutic approaches have been implemented for the treatment of NPC including active, adoptive immunotherapy, and modulation of immune regulatory molecules by use of the so-called checkpoint inhibitors. In this review, we will highlight the role of EBV infection in NPC development and analyze its possible implications on therapy strategies.
Collapse
Affiliation(s)
- Francesco Perri
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | | | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Department of Abdominal Oncology, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Roberta Fusco
- Medical Oncology Division, IGEA SPA, 41012 Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Marco Cascella
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Francesco Longo
- Otolaryngology and Maxillofacial Surgery Surgery Unit, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| | - Rosalia Anna Rega
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Giovanni Salzano
- Maxillofacial Surgery Surgery Unit, Reproductive and Odontostomatological Science, University of Naples Federico II, 80138 Napoli, Italy
| | - Monica Pontone
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Maria Luisa Marciano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Arianna Piccirillo
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Massimo Montano
- Medical and Experimental Head and Neck Oncology Unit, INT IRCCS Foundation G. Pascale, 80131 Napoli, Italy
| | - Morena Fasano
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | | | - Franco Ionna
- Division of Anesthesia and Pain Medicine, INT IRCCS Foundation G Pascale, 80131 Napoli, Italy
| |
Collapse
|
18
|
Zhao Z, Deng J, Lu M, Yang J, Chen L, Li D, Sang Y. TRIM11, a new target of p53, facilitates the migration and invasion of nasopharyngeal carcinoma cells. Mol Biol Rep 2023; 50:731-737. [PMID: 36376537 PMCID: PMC9884187 DOI: 10.1007/s11033-022-07833-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although tripartite motif-containing protein 11 (TRIM11) is known to be associated with a variety of cancers, its role in nasopharyngeal carcinoma (NPC) is unclear. METHODS AND RESULTS To investigate the role of TRIM11 in NPC, TRIM11 was stably overexpressed in 6-10B and CNE2 cells with lentiviral vectors and knocked down in S18 and 5-8F cells using the CRISPR/Cas9 system. Transwell assays and wound-healing assays revealed that TRIM11 facilitated the migration and invasion of NPC cells. Mechanistically, we found that p53 inhibits TRIM11 expression by binding to its promoter. CONCLUSIONS TRIM11 may serve as a potential diagnostic marker for NPC and has a certain therapeutic value.
Collapse
Affiliation(s)
- Ziyi Zhao
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China
| | - Jinkuang Deng
- Jiangxi Engineering Laboratory for the Development and Utilisation of Agricultural Microbial Resources, College of Bioscience and Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ming Lu
- Department of Otolaryngology Head and Neck Surgery, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Jun Yang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China
| | - Linlin Chen
- The Key Laboratory of Oral Biomedicine in Jiangxi Province, Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, 330006, China.
| | - DianYuan Li
- Department of Cardiovascular Surgery, The Affiliated Suzhou Hospital, Nanjing Medical University, Suzhou, 215002, China.
| | - Yi Sang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, The First Hospital of Nanchang, Nanchang, 330008, China.
| |
Collapse
|
19
|
[ 68Ga]Ga-FAPI PET/CT Improves the T Staging of Patients with Newly Diagnosed Nasopharyngeal Carcinoma: A Comparison with [ 18F]F-FDG. Mol Imaging Biol 2022; 24:973-985. [PMID: 35945360 DOI: 10.1007/s11307-022-01748-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE This study aimed to explore the value of [68Ga]Ga-labelled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI) positron emission tomography/computed tomography (PET/CT) in the initial staging of patients with newly diagnosed nasopharyngeal carcinoma (NPC), compared with 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) PET/CT. MATERIALS AND METHODS Forty-seven treatment-naïve patients with newly diagnosed NPC underwent magnetic resonance imaging (MRI), [68Ga]Ga-DOTA-FAPI-04 PET/CT and [18F]F-FDG PET/CT within 1 week. The diagnostic efficiency of all imaging modalities for evaluating primary tumour extension was compared from the two aspects of soft tissue and bony structure involvement. The accuracy of two PET/CT methods for diagnosing cervical lymph node (CLN) metastases was compared, and MRI served as the standard reference. T and N stages were assessed by MRI, [68Ga]Ga-FAPI PET/CT and [18F]F-FDG PET/CT. Immunohistochemical (IHC) staining for FAP was conducted in 22 of the patients. RESULTS [68Ga]Ga-FAPI PET/CT outperformed [18F]F-FDG PET/CT in the assessment of primary tumour invasion in the cavernous sinus (10 vs. 1, p < 0.001) and bony structures (207 vs. 177, p < 0.001). Compared with MRI, [68Ga]Ga-FAPI PET/CT upgraded and underestimated T stage in 13 and 2 patients, while [18F]F-FDG PET/CT upgraded and underestimated T stage in 5 and 13 patients. However, [68Ga]Ga-FAPI PET/CT was inferior to [18F]F-FDG PET/CT in diagnosing positive CLNs based on the analyses of patients, neck sides, neck levels and individual nodes. [68Ga]Ga-FAPI PET/CT changed therapeutic schedules in 8 patients because of stage group changes. The presence of FAP with high quantity and intensity in cancer-associated fibroblasts (CAFs) was confirmed in all tumour specimens. CONCLUSION [68Ga]Ga-FAPI PET/CT outperformed [18F]F-FDG PET/CT in detecting the cavernous sinus and bony structure involvement of primary NPC tumours, suggesting its value in improving T staging and therapeutic regimen selection. However, the performance of [68Ga]Ga-FAPI PET/CT is less promising for N staging because it detected fewer positive CLNs than [18F]F-FDG PET/CT.
Collapse
|
20
|
Liu WN, So WY, Harden SL, Fong SY, Wong MXY, Tan WWS, Tan SY, Ong JKL, Rajarethinam R, Liu M, Cheng JY, Suteja L, Yeong JPS, Iyer NG, Lim DWT, Chen Q. Successful targeting of PD-1/PD-L1 with chimeric antigen receptor-natural killer cells and nivolumab in a humanized mouse cancer model. SCIENCE ADVANCES 2022; 8:eadd1187. [PMID: 36417514 PMCID: PMC9683725 DOI: 10.1126/sciadv.add1187] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 06/12/2023]
Abstract
In recent decades, chimeric antigen receptor (CAR)-engineered immune effector cells have demonstrated promising antileukemic activity. Nevertheless, their efficacy remains unsatisfactory on solid cancers, plausibly due to the influence of tumor microenvironments (TME). In a novel mouse cancer model with a humanized immune system, tumor-infiltrating immunosuppressive leukocytes and exhausted programmed death protein-1 (PD-1)high T cells were found, which better mimic patient TME, allowing the screening and assessment of immune therapeutics. Particularly, membrane-bound programmed death ligand 1 (PD-L1) level was elevated on a tumor cell surface, which serves as an attractive target for natural killer (NK) cell-mediated therapy. Hematopoietic stem cell-derived CAR-NK (CAR pNK) cells targeting the PD-L1 showed enhanced in vitro and in vivo anti-solid tumor function. The CAR pNK cells and nivolumab resulted in a synergistic anti-solid tumor response. Together, our study highlights a robust platform to develop and evaluate the antitumor efficacy and safety of previously unexplored therapeutic regimens.
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wing Yan So
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sarah L. Harden
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Melissa Xin Yu Wong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jessica Kai Lin Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | | | - Joe Poh Sheng Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
| | - N. Gopalakrishna Iyer
- Duke-NUS Medical School, 169857, Singapore
- Department of Head and Neck Surgery, National Cancer Centre Singapore, 169610, Singapore
| | - Darren Wan-Teck Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Division of Medical Oncology, National Cancer Center Singapore, 169610, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| |
Collapse
|
21
|
Liu Q, Ma L, Ma H, Yang L, Xu Z. Establishment of a prognostic nomogram for patients with locoregionally advanced nasopharyngeal carcinoma incorporating clinical characteristics and dynamic changes in hematological and inflammatory markers. Front Oncol 2022; 12:1032213. [DOI: 10.3389/fonc.2022.1032213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundThis study aims to investigate the prognostic value of changes in hematological and inflammatory markers during induction chemotherapy (IC) and concurrent chemo-radiation (CCRT), thus construct nomograms to predict progression free survival (PFS) of patients with locally advanced nasopharyngeal carcinoma (LANPC).Methods130 patients were included in this prospective analysis. Univariate and multivariate cox regression analyses were conducted to identify prognostic factors. Three multivariate analyses integrating different groups of variables were conducted independently. Concordance indexes (c-index), calibration plots and Kaplan-Meier curves were used to evaluate the nomograms. Bootstrap validation was performed to determine the accuracy of the nomogram using 1000 resamples. The performances of proposed nomograms and TNM staging system were compared to validate the prognostic value of hematological and inflammatory markers.ResultsPretreatment gross tumor volume of nodal disease (GTVn), Δe/bHGB (hemoglobin count at end of treatment/baseline hemoglobin count), and stage were selected as predictors for 3-year PFS in first multivariate analysis of clinical factors. The second multivariate analysis of clinical factors and all hematological variables demonstrated that ΔminLYM (minimum lymphocyte count during CCRT/lymphocyte count post-IC), pretreatment GTVn and stage were associated with 3-year PFS. Final multivariate analysis, incorporating all clinical factors, hematological variables and inflammatory markers, identified the following prognostic factors: pretreatment GTVn, stage, ΔmaxPLR (maximum platelet-to-lymphocyte ratio (PLR) during CCRT/PLR post-IC), and ΔminPLT (minimum platelet count during CCRT/platelet count post-IC). Calibration plots showed agreement between the PFS predicted by the nomograms and actual PFS. Kaplan–Meier curves demonstrated that patients in the high-risk group had shorter PFS than those in the low-risk group (P ≤ 0.001). The c-indexes of the three nomograms for PFS were 0.742 (95% CI, 0.639-0.846), 0.766 (95% CI, 0.661-0.871) and 0.815 (95% CI,0.737-0.893) respectively, while c-index of current TNM staging system was 0.633 (95% CI, 0.531-0.736).ConclusionWe developed and validated a nomogram for predicting PFS in patients with LANPC who received induction chemotherapy and concurrent chemo-radiation. Our study confirmed the prognostic value of dynamic changes in hematological and inflammatory markers. The proposed nomogram outperformed the current TNM staging system in predicting PFS, facilitating risk stratification and guiding individualized treatment plans.
Collapse
|
22
|
Mohr T, Zwick A, Hans MC, Bley IA, Braun FL, Khalmurzaev O, Matveev VB, Loertzer P, Pryalukhin A, Hartmann A, Geppert CI, Loertzer H, Wunderlich H, Naumann CM, Kalthoff H, Junker K, Smola S, Lohse S. The prominent role of the S100A8/S100A9-CD147 axis in the progression of penile cancer. Front Oncol 2022; 12:891511. [PMID: 36303837 PMCID: PMC9592847 DOI: 10.3389/fonc.2022.891511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, no established biomarkers are recommended for the routine diagnosis of penile carcinoma (PeCa). The rising incidence of this human papillomavirus (HPV)–related cancer entity highlights the need for promising candidates. The Calprotectin subunits S100A8 and S100A9 mark myeloid-derived suppressor cells in other HPV-related entities while their receptor CD147 was discussed to identify patients with PeCa at a higher risk for poor prognoses and treatment failure. We thus examined their expression using immunohistochemistry staining of PeCa specimens from 74 patients on tissue microarrays of the tumor center, the invasion front, and lymph node metastases. Notably, whereas the tumor center was significantly more intensively stained than the invasion front, lymph node metastases were thoroughly positive for both S100 subunits. An HPV-positive status combined with an S100A8+S100A9+ profile was related with an elevated risk for metastases. We observed several PeCa specimens with S100A8+S100A9+-infiltrating immune cells overlapping with CD15 marking neutrophils. The S100A8+S100A9+CD15+ profile was associated with dedifferentiated and metastasizing PeCa, predominantly of HPV-associated subtype. These data suggest a contribution of neutrophil-derived suppressor cells to the progression of HPV-driven penile carcinogenesis. CD147 was elevated, expressed in PeCa specimens, prominently at the tumor center and in HPV-positive PeCa cell lines. CD147+HPV+ PeCa specimens were with the higher-frequency metastasizing cancers. Moreover, an elevated expression of CD147 of HPV-positive PeCa cell lines correlated negatively with the susceptibility to IgA-based neutrophil-mediated tumor cell killing. Finally, stratifying patients regarding their HPV/S100A8/S100A9/CD15/CD147 profile may help identify patients with progressing cancer and tailor immunotherapeutic treatment strategies.
Collapse
Affiliation(s)
- Tobias Mohr
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Anabel Zwick
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | | | | | - Felix Leon Braun
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Oybek Khalmurzaev
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod Borisovich Matveev
- Department of Urology, Federal State Budgetary Institution “N.N. Blokhin National Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Philine Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Alexey Pryalukhin
- Institute of Pathology, Saarland University Medical Center, Homburg, Germany
- Institute of Pathology, University Medical Center Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Hagen Loertzer
- Department of Urology and Paediatric Urology, Westpfalz Klinikum, Kaiserslautern, Germany
| | - Heiko Wunderlich
- Department of Urology and Paediatric Urology, St. Georg Klinikum, Eisenach, Germany
| | - Carsten Maik Naumann
- Department of Urology and Paediatric Urology, University Hospital Schleswig Holstein, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute of Experimental Cancer Research, University Hospital Schleswig Holstein, Kiel, Germany
| | - Kerstin Junker
- Department of Urology and Paediatric Urology, Saarland University Medical Center, Homburg, Germany
| | - Sigrun Smola
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
| | - Stefan Lohse
- Institute of Virology, Saarland University Medical Center, Homburg, Germany
- *Correspondence: Stefan Lohse,
| |
Collapse
|
23
|
Galizia D, Minei S, Maldi E, Chilà G, Polidori A, Merlano MC. How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines 2022; 10:biomedicines10102498. [PMID: 36289760 PMCID: PMC9599463 DOI: 10.3390/biomedicines10102498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 12/24/2022] Open
Abstract
Most head and neck squamous cell carcinomas (HNSCCs) are caused by lifestyle, such as cigarette smoking, or by viruses, such as human papillomavirus (HPV) and Epstein–Barr virus (EBV). HNSCC remains a clinical challenge, notwithstanding the improvements observed in the past years, involving surgery, radiotherapy, and chemotherapy. Recurrent/metastatic (R/M) disease represents an unmet clinical need. Immunotherapy has improved the prognosis of a small proportion of these patients, but most still do not benefit. In the last decade, several preclinical and clinical studies have explored the HNSCC tumor immune microenvironment (TIME), identifying important differences between smoking-associated and virus-associated HNSCCs. This review aims to present how different etiologies affect the HNSCC TIME, affecting immune escape mechanisms and sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Danilo Galizia
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| | - Silvia Minei
- Post-Graduate School of Specialization in Medical Oncology, University of Bari ‘A. Moro’, 70120 Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, 70120 Bari, Italy
| | - Elena Maldi
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Giovanna Chilà
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | | |
Collapse
|
24
|
Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, Zhao C, Yang L, Xu Z, Dong S, Yu H, Li B, Guan X, Hou Y, Kong FM. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol 2022; 15:87. [PMID: 35799264 PMCID: PMC9264569 DOI: 10.1186/s13045-022-01307-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The development of combination immunotherapy based on the mediation of regulatory mechanisms of the tumor immune microenvironment (TIME) is promising. However, a deep understanding of tumor immunology must involve the systemic tumor immune environment (STIE) which was merely illustrated previously. Here, we aim to review recent advances in single-cell transcriptomics and spatial transcriptomics for the studies of STIE, TIME, and their interactions, which may reveal heterogeneity in immunotherapy responses as well as the dynamic changes essential for the treatment effect. We review the evidence from preclinical and clinical studies related to TIME, STIE, and their significance on overall survival, through different immunomodulatory pathways, such as metabolic and neuro-immunological pathways. We also evaluate the significance of the STIE, TIME, and their interactions as well as changes after local radiotherapy and systemic immunotherapy or combined immunotherapy. We focus our review on the evidence of lung cancer, hepatocellular carcinoma, and nasopharyngeal carcinoma, aiming to reshape STIE and TIME to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, Guangdong, 518020, China.,Key Laboratory of Medical Electrophysiology of Education Ministry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Shanshan Zhang
- Department of Chemical Biology, School of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Timothy Shun Man Chu
- Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yan Zhang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Weiwei Chen
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Caining Zhao
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Yang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Hao Yu
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518055, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 528200, China.
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Feng-Ming Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
25
|
Forder A, Stewart GL, Telkar N, Lam WL, Garnis C. New insights into the tumour immune microenvironment of nasopharyngeal carcinoma. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:222-227. [PMID: 36118267 PMCID: PMC9475211 DOI: 10.1016/j.crimmu.2022.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is unique among head and neck cancers for its strong causative association with Epstein Barr-Virus and high levels of immune infiltration that play a role in pathogenesis. As such, immunotherapy for the treatment of NPC is a promising area of research in the pursuit of improving patient outcomes. Understanding the tumour immune microenvironment (TIME) of NPC is the key to developing targeted immunotherapies and stratifying patients to determine optimal treatment regimens. Recent research has uncovered distinct characteristics of the TIME in NPC as well as important differences between the different disease subtypes; however, reviewing the state of the field reveals a further need for the application of novel techniques like multiplexed hyperspectral imaging and mass cytometry. These techniques can be used to identify spatial, compositional, and functional aspects of the TIME in NPC such as immune cell sociology, novel immune populations, and differences in immune-related signalling pathways in NPC in order to identify clinically relevant characteristics for targeted immunotherapy development and biomarker discovery.
Collapse
Affiliation(s)
- Aisling Forder
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5Z1L3, Canada
- Corresponding author. Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada.
| | - Greg L. Stewart
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5Z1L3, Canada
| | - Nikita Telkar
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada
| | - Wan L. Lam
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5Z1L3, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC V5Z 1L3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5Z1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|