1
|
El-Saadony MT, Saad AM, Mohammed DM, Korma SA, Alshahrani MY, Ahmed AE, Ibrahim EH, Salem HM, Alkafaas SS, Saif AM, Elkafas SS, Fahmy MA, Abd El-Mageed TA, Abady MM, Assal HY, El-Tarabily MK, Mathew BT, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Medicinal plants: bioactive compounds, biological activities, combating multidrug-resistant microorganisms, and human health benefits - a comprehensive review. Front Immunol 2025; 16:1491777. [PMID: 40375989 PMCID: PMC12079674 DOI: 10.3389/fimmu.2025.1491777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/13/2025] [Indexed: 05/18/2025] Open
Abstract
In recent years, medicinal plants have gained significant attention in modern medicine due to their accessibility, affordability, widespread acceptance, and safety, making herbal remedies highly valued globally. Consequently, ensuring medicinal plants' quality, efficacy, and safety has become a critical concern for developed and developing nations. The emergence of multidrug-resistant microorganisms poses a serious global health threat, particularly in low-income regions, despite significant advancements in antimicrobial drugs and medical research over the past century. The rapid spread of these multidrug-resistant infections is primarily attributed to improper prescriptions, overuse, and unregulated access to antibiotics. Addressing these challenges, the standardization of plant-derived pharmaceuticals could pave the way for a transformative era in healthcare. Preserving and leveraging the historical knowledge of medicinal plants is essential before such valuable information is lost. Recently, there has been growing interest among natural and pharmaceutical scientists in exploring medicinal plants as potential sources of antimicrobial agents. This current review aims to identify the most common pathogens threatening human health, analyze the factors contributing to the rise of drug-resistant microorganisms, and evaluate the widespread use of medicinal plants across various countries as alternative antibiotics, highlighting their unique mechanisms of antimicrobial resistance.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Essam H. Ibrahim
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, Egypt
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Diseases of Birds, Rabbits, Fish & their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abdullah M. Saif
- Division of Biochemistry, Department of Chemistry, Tanta University, Faculty of Science, Tanta, Egypt
| | - Sara Samy Elkafas
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics University, Saint-Petersburg, Russia
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
| | - Mohamed A. Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Taia A. Abd El-Mageed
- Soils and Water Science Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mariam M. Abady
- Nutrition and Food Sciences Department, National Research Centre, Giza, Egypt
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - Hanya Y. Assal
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6 October City, Egypt
| | | | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
2
|
Liu Y, Sun X, Wei C, Guo S, Song C, Zhang J, Bai J. Targeted Drug Nanodelivery and Immunotherapy for Combating Tumor Resistance. Comb Chem High Throughput Screen 2025; 28:561-581. [PMID: 38676501 DOI: 10.2174/0113862073296206240416060154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 04/29/2024]
Abstract
Chemotherapy resistance is a common cause of tumor treatment failure. Various molecular responses, such as increased expression of efflux transporter proteins, including Pglycoprotein (P-gp), changes in the tumor microenvironment (TME), the role of platelets, and the effects of cancer stem cells (CSCs), can lead to drug resistance. Through extensive research on the mechanisms of drug resistance, more effective anti-resistance drugs and therapeutic approaches are being developed. This review explores drug resistance mechanisms and summarizes relevant anti-resistance drugs. In addition, due to the therapeutic limitations of the aforementioned treatments, new advances in nanocarrier-based combination immunotherapy to address the challenge of drug resistance have been described. Nanocarriers combined with immunotherapy can not only target tumor sites for targeted drug release but also modulate the autoimmune system and enhance immune efficacy, thereby overcoming tumor drug resistance. This review suggests new strategies for overcoming tumor drug resistance and is expected to inform tumor treatment and prognosis.
Collapse
Affiliation(s)
- Yun Liu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Xinyu Sun
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chen Wei
- School of Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shoudong Guo
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Chunxiao Song
- Anorectal Department, Weifang people's Hospital, Weifang, 261000, China
| | - Jiangyu Zhang
- school of Chemistry and Chemical Engineering, Xingtai University, Xingtai, 054001, China
| | - Jingkun Bai
- School of Bioscience and Technology, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
3
|
Zang Y, Qiu Y, Sun Y, Fan Y. Immunomodulatory effects of Huaier granule in cancer therapy: a meta-analysis of randomized controlled trials. Eur J Med Res 2024; 29:467. [PMID: 39342351 PMCID: PMC11438288 DOI: 10.1186/s40001-024-02060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This meta-analysis aimed to summarize the immunomodulatory effect of Huaier (Trametes robiniophila Murr) granule as adjuvant therapy in patients with cancer. MATERIALS AND METHODS: Two authors conducted a search for literature indexed on various databases including PubMed, Embase, Cochrane Library, CNKI, Sinomed, VIP, and WanFang. Randomized controlled trials (RCTs) that investigated the immunomodulatory effect of Huaier granule as adjuvant therapy in cancer patients were included. The outcome of interest included T-lymphocyte subsets (CD3+, CD4+, CD8+ and CD4+/CD8+), immunoglobulin (IgA, IgG, IgM), and natural killer (NK) cells. RESULTS We identified 29 RCTs involving a total of 2206 cancer (including hepatocellular, breast, gastric, colorectal, lung, or nasopharyngeal carcinoma) patients. Compared with conventional treatment alone, Huaier combined conventional treatment significantly improved CD3+ (mean difference [MD] 6.95; 95% confidence intervals [CI] 4.42-9.48), CD4+ (MD 5.53; 95%CI 4.22-6.83), CD4+/CD8+ (MD 0.35; 95%CI 0.25-0.45), IgA (standardized mean difference [SMD] 1.18; 95%CI 0.44-1.93), IgG(SMD 1.71; 95%CI 1.11-2.30), IgM (SMD 0.83; 95%CI 0.59-1.07), and NK cells (MD 5.01; 95%CI 3.61-6.40). However, the effect of Huaier on CD8+ (MD - 1.35; 95%CI - 2.80 to 0.11) was not statistically significant between the groups. CONCLUSIONS Huaier granule as adjuvant therapy may significantly improve immune function in patients with cancers. However, additional well-designed RCTs are needed to validate the current findings considering the methodological flaws of the analyzed trials.
Collapse
Affiliation(s)
- Ye Zang
- Department of Oncology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, 212399, China
| | - Yue Qiu
- Institute of Molecular Biology and Translational Medicine, Cancer Institute, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, China
| | - Yimeng Sun
- Institute of Molecular Biology and Translational Medicine, Cancer Institute, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| | - Yu Fan
- Institute of Molecular Biology and Translational Medicine, Cancer Institute, The Affiliated People's Hospital, Jiangsu University, No. 8 Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
4
|
Zhang Z, Chen Z, Que Z, Fang Z, Zhu H, Tian J. Chinese Medicines and Natural Medicine as Immunotherapeutic Agents for Gastric Cancer: Recent Advances. Cancer Rep (Hoboken) 2024; 7:e2134. [PMID: 39233637 PMCID: PMC11375283 DOI: 10.1002/cnr2.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/30/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUD According to the 2020 statistics from the World Health Organization's International Agency for Research on Cancer (IARC), it is projected that there will be over 1 million new cases of gastric cancer (GC) patients worldwide in 2020, resulting in approximately 770 000 deaths. Gastric cancer ranks fifth in terms of incidence rate and forth in death rate among malignant tumors. Despite advancements in early diagnostic techniques, the incidence of GC has exhibited a marginal decline; nevertheless, the mortality rate remains elevated for advanced inoperable patients with no currently available efficacious treatment options. RECENT FINDING Chinese medicine (CM) has emerged as an efficacious treatment for GC, gradually gaining acceptance and widespread usage in China. It exhibits distinctive advantages in the prevention and treatment of metastasis. CM and natural medicine possess the ability to elicit antitumor effects by augmenting immune cell population, enhancing immune cell activity, and improving the tumor immune microenvironment. CMs and natural remedies encompass a diverse range of types, characterized by multiple targets, pathways, and extensive pharmacological effects. Consequently, they have become a prominent research area among oncologists worldwide. Numerous studies have demonstrated that CM and natural medicine can directly or indirectly enhance innate immune system components (including macrophages, natural killer cells, and myeloid suppressor cells), adaptive immune system elements (such as T lymphocytes and regulatory T cells), relevant cytokines (e.g., IL-2, IL-4, IL-10, TNF-α), and PD-1/PD-L1 axis regulation, thereby bolstering the cytotoxicity of immune cells against tumor cells. CONCLUSIONS This ultimately leads to an improved tumor immune microenvironment facilitating superior antitumor efficacy. This paper critically examines the role of CM and natural medicine in regulating immunotherapy for GC, aiming to establish a new theoretical framework for the clinical treatment and prevention of gastric cancer within the realm of CM.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Ziqi Chen
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zujun Que
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
| | - Zhihong Fang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huirong Zhu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhui Tian
- Institute of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine (TCM), Shanghai, China
- Clinical Oncology Center, Shanghai Municipal Hospital of TCM, Shanghai University of TCM, Shanghai, China
| |
Collapse
|
5
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
6
|
Qian Q, Pan J, Yang J, Wang R, Luo K, Wu Z, Ma S, Wang Y, Li M, Gao Y. Syringin: a naturally occurring compound with medicinal properties. Front Pharmacol 2024; 15:1435524. [PMID: 39104400 PMCID: PMC11298447 DOI: 10.3389/fphar.2024.1435524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Syringin, a phenylpropanoid glycoside, is widely distributed in various plants, such as Acanthopanax senticosus (Rupr. et Maxim.) Harms, Syringa reticulata (BL) Hara var. mandshurica (Maxim.) Hara, and Ilex rotunda Thumb. It serves as the main ingredient in numerous listed medicines, health products, and foods with immunomodulatory, anti-tumor, antihyperglycemic, and antihyperlipidemic effects. This review aims to systematically summarize syringin, including its physicochemical properties, plant sources, extraction and separation methods, total synthesis approaches, pharmacological activities, drug safety profiles, and preparations and applications. It will also cover the pharmacokinetics of syringin, followed by suggestions for future application prospects. The information on syringin was obtained from internationally recognized scientific databases through the Internet (PubMed, CNKI, Google Scholar, Baidu Scholar, Web of Science, Medline Plus, ACS Elsevier, and Flora of China) and libraries. Syringin, extraction and separation, pharmacological activities, preparations and applications, and pharmacokinetics were chosen as the keywords. According to statistics, syringin can be found in 23 families more than 60 genera, and over 100 species of plants. As a key component in many Chinese herbal medicines, syringin holds significant research value due to its unique sinapyl alcohol structure. Its diverse pharmacological effects include immunomodulatory activity, tumor suppression, hypoglycemic action, and hypolipidemic effects. Additionally, it has been shown to provide neuroprotection, liver protection, radiation protection, cardioprotection, and bone protection. Related preparations such as Aidi injection, compound cantharidin capsule, and Tanreqing injection have been widely used in clinical settings. Other studies on syringin such as extraction and isolation, total synthesis, safety profile assessment, and pharmacokinetics have also made progress. It is crucial for medical research to deeply explore its mechanism of action, especially regarding immunity and tumor therapy. Meanwhile, more robust support is needed to improve the utilization of plant resources and to develop extraction means adapted to the needs of industrial biochemistry to further promote economic development while protecting people's health.
Collapse
Affiliation(s)
- Qingyuan Qian
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Jinchao Pan
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jun Yang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Renjie Wang
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Luo
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhenhui Wu
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Shuhe Ma
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuguang Wang
- Institute of Radiation Medicine Sciences, Beijing, China
| | - Maoxing Li
- College of Pharmacy, Lanzhou University, Lanzhou, China
- Institute of Radiation Medicine Sciences, Beijing, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yue Gao
- Institute of Radiation Medicine Sciences, Beijing, China
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
7
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Yang F, Li X, Zhang Y, Ren Y, Zhang J, Xiao K. Prediction of potential mechanisms of rhubarb therapy for colorectal cancer based on network pharmacological analysis and molecular docking. Medicine (Baltimore) 2024; 103:e37477. [PMID: 38518016 PMCID: PMC10957024 DOI: 10.1097/md.0000000000037477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
The objective of this study was to investigate the potential targets and mechanism of Rheum palmatum L in the treatment of colorectal cancer based on the network pharmacology and molecular docking, which could provide the theoretical basis for clinical applications. The potential components were screened using TCMSP database and articles. The gene targets of colorectal cancer were screened through the Genecards database and Online Mendelian Inheritance in Man database. Then, the common targets of components and colorectal cancer were used to construct the network diagram of active components and targets in Cytoscape 3.7.0. The protein-protein interaction (PPI) diagram was generated using String database, and the targets were further analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes. Molecular docking between gene targets and active components was analyzed via AutoDock, and visualized through PyMol. Among this study, main targets might be TP53, EGF, MYC, CASP3, JUN, PTGS2, HSP90AA1, MMP9, ESR1, PPARG. And 10 key elements might associate with them, such as aloe-emodin, beta-sitosterol, gallic acid, eupatin, emodin, physcion, cis-resveratrol, rhein, crysophanol, catechin. The treatment process was found to involve nitrogen metabolism, p53 signaling pathway, and various cancer related pathway, as well as the AGE-RAGE signaling pathway, estrogen signaling pathway, interleukin-17 signaling pathway and thyroid hormone signaling pathway. The molecular docking was verified the combination between key components and their respective target proteins. Network pharmacological analysis demonstrated that R palmatum was could regulated p53, AGE-RAGE, interleukin-17 and related signaling pathway in colorectal cancer, which might provide a scientific basis of mechanism.
Collapse
Affiliation(s)
- Fan Yang
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| | - Xinghua Li
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| | - Yujie Zhang
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| | - Yun Ren
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| | - Jiao Zhang
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| | - Keyuan Xiao
- Changzhi People’s Hospital, The Affiliated Hospital of Shanxi Medical University, Changzhi, Shanxi Province, P.R. China
| |
Collapse
|
9
|
Shi C, Liu X, Han SS, Tang YF, Zeng HL, Du ML, Yang Y, Jia JN, Shi Q, Hou FG. Mechanism of Preventing Recurrence of Stage II-III Colorectal Cancer Metastasis with Immuno-inflammatory and Hypoxic Microenvironment by a Four Ingredients Chinese Herbal Formula: A Bioinformatics and Network Pharmacology Analysis. Curr Pharm Des 2024; 30:2007-2026. [PMID: 38867534 DOI: 10.2174/0113816128294401240523092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Colorectal Cancer (CRC) is one of the top three malignancies with the highest incidence and mortality. OBJECTIVE The study aimed to identify the effect of Traditional Chinese Medicine (TCM) on postoperative patients with stage II-III CRC and explore the core herb combination and its mechanism. METHODS An observational cohort study was conducted on patients diagnosed with stage II-III CRC from January 2016 to January 2021. The primary outcome was disease-free survival, which was compared between the patients who received TCM or not, and the secondary outcome was the hazard ratio. The relevance principle was used to obtain the candidate herb combinations, and the core combination was evaluated through an assessment of efficacy and representativeness. Then, biological processes and signaling pathways associated with CRC were obtained by Gene Ontology function, Kyoto Encyclopedia of Gene and Genomes pathway, and Wikipathway. Furthermore, hub genes were screened by the Kaplan-Meier estimator, and molecular docking was employed to predict the binding sites of key ingredients to hub genes. The correlation analysis was employed for the correlations between the hub genes and tumor-infiltrating immune cells and hypoxiarelated genes. Ultimately, a quantitative polymerase chain reaction was performed to verify the regulation of hub genes by their major ingredients. RESULTS A total of 707 patients were included. TCM could decrease the metastatic recurrence associated with stage II-III CRC (HR: 0.61, log-rank P < 0.05). Among those patients in the TCM group, the core combination was Baizhu → Yinchen, Chenpi, and Fuling (C combination), and its antitumor mechanism was most likely related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients, quercetin and tangeretin. The expression of these genes was significantly correlated with both tumor-infiltrating immune cells and hypoxia- related genes. In addition, quercetin and tangeretin down-regulated the mRNA levels of BCL2L1, XIAP, and TOP1, thereby inhibiting the growth of HCT116 cells. CONCLUSION Overall, a combination of four herbs, Baizhu → Yinchen, Chenpi, and Fuling, could reduce metastatic recurrence in postoperative patients with stage II-III CRC. The mechanism may be related to the regulation of BCL2L1, XIAP, and TOP1 by its key ingredients quercetin and tangeretin.
Collapse
Affiliation(s)
- Chuan Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Su-Su Han
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yu-Fei Tang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Hai-Lun Zeng
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Mei-Lu Du
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yi Yang
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jia-Ning Jia
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Qi Shi
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Feng-Gang Hou
- Oncology Department III, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
10
|
Li G, Chen D. Comparison of different extraction methods of active ingredients of Chinese medicine and natural products. J Sep Sci 2024; 47:e2300712. [PMID: 38234023 DOI: 10.1002/jssc.202300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Like other traditional medicine in the world, Chinese traditional medicine (CTM) has a long history, which is a treasure of the combination of medicine and Chinese classical culture even more than 5000 years. For thousands of years, CTM has made great contributions to the reproduction and health of the Chinese people. It was an efficient therapeutic tool under the guidance of Chinese traditional medical theory, its source is generally natural products, but there are also a small number of it are natural products after some processing methods. In fact, the definition of Chinese medicine (CM) includes both traditional and new CM developed by modern technology. It is well known that the chemical composition of most CM and natural products is very complex, for example, a single herb may contain hundreds of different chemicals, including active ingredients, side effects, and even toxic ingredients. Therefore, the extraction process is particularly crucial for the quality and clinical efficacy of CM and natural products. In this work, a new classification method was proposed to divide the extraction technologies of CM and natural products into 21 kinds in recent years and analyze their status, advantages, and disadvantages. Then put forward a new technical route based on ultra-high-pressure extraction technology for rapid extraction else while removing harmful impurities and making higher utilization of CM and natural products. It is a useful exploration for the extraction industry of medicinal materials and natural products in the world.
Collapse
Affiliation(s)
- Geyuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongya Chen
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
11
|
Jian S, Kong D, Tian J. Expression of miR-425-5p in Pancreatic Carcinoma and Its Correlation with Tumor Immune Microenvironment. J INVEST SURG 2023; 36:2216756. [PMID: 37455016 DOI: 10.1080/08941939.2023.2216756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Background: Pancreatic carcinoma (PC) is a global health threat with a high death rate. miRNAs are implicated in tumor initiation and progression. This study explored the expression of miR-425-5p in PC patients and its correlation with tumor immune microenvironment (TIME).Method: miR-425-5p expression in cancer tissues and adjacent non-tumor tissues of PC patients was examined by RT-qPCR. The levels of immune cells and cytokines were measured by flow cytometry and ELISA. The correlation of miR-425-5p with TNM stage and TIME was assessed by Spearman method. The death of PC patients was recorded through 36-month follow-ups. The prognosis of patients was assessed by Kaplan-Meier curves.Results: miR-425-5p expression was upregulated in PC tissues and elevated with increasing TNM stage. miR-425-5p expression was positively correlated with TNM stage. The PC tissues had decreased levels of CD3+, CD4+, CD8+, and natural killer (NK) cells, CD4+/CD8+ ratio, IL-2, and INF-γ, but increased levels of Tregs, IL-4, IL-10, and TGF-β. miR-425-5p level in cancer tissues was positively correlated with Tregs/IL-10/TGF-β, but negatively related to CD3+/CD4+/CD8+/NK cells and IL-2/INF-γ. Moreover, high miR-425-5p expression predicted a poor prognosis in PC patients.Conclusion: miR-425-5p is upregulated in PC patients and is prominently associated with the TIME, and high miR-425-5p predicts a poor prognosis in PC patients.
Collapse
Affiliation(s)
- Shuo Jian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Dehua Kong
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| | - Jieli Tian
- Department of Oncology, Suining Central Hospital, Suining, Sichuan Province, China
| |
Collapse
|
12
|
Wang X, Li J, Chen R, Li T, Chen M. Active Ingredients from Chinese Medicine for Combination Cancer Therapy. Int J Biol Sci 2023; 19:3499-3525. [PMID: 37497002 PMCID: PMC10367560 DOI: 10.7150/ijbs.77720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/26/2023] [Indexed: 07/28/2023] Open
Abstract
Combination therapy against cancer has gained increasing attention because it can help to target multiple pathways to tackle oncologic progression and improve the limited antitumor effect of single-agent therapy. Chinese medicine has been studied extensively in cancer therapy and proven to be efficacious in many cases due to its wide spectrum of anticancer activities. In this review, we aim to summarize the recent progress of active ingredients from Chinese medicine (AIFCM) in combination with various cancer therapeutic modalities, including chemotherapy, gene therapy, radiotherapy, phototherapy and immunotherapy. In addition to highlighting the potential contribution of AIFCM in combination cancer therapy, we also elucidate the underlying mechanisms behind their synergistic effect and improved anticancer efficacy, thereby encouraging the inclusion of these AIFCM as part of effective armamentarium in fighting intractable cancers. Finally, we present the challenges and future perspectives of AIFCM combination therapy as a feasible and promising strategy for the optimization of cancer treatment and better clinical outcomes.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jing Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ruie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, 999078, China
| |
Collapse
|
13
|
Pu Q, Yu L, Wang X, Yan H, Xie Y, Jiang Y, Yang Z. Immunomodulatory Effect of Traditional Chinese Medicine Combined with Systemic Therapy on Patients with Liver Cancer: A Systemic Review and Network Meta-analysis. J Cancer 2022; 13:3280-3296. [PMID: 36118529 PMCID: PMC9475362 DOI: 10.7150/jca.74829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Objective: As immune combination therapy in the treatment of liver cancer made significant achievements, and the modulating effect of traditional Chinese medicine (TCM) on immunity gradually appeared. The main purpose of this study was to study the effect of different TCM combined with systemic therapy (ST) on immune regulation in patients with liver cancer, as well as the efficacy and safety of combined therapy, and to find the best combined application scheme by ranking. Methods: Nine electronic databases were searched from January 1, 2010, to November 12, 2021, to search for RCTs of TCM combined ST in the field of liver cancer for literature screening, quality evaluation and data extraction. STATA 15.0 and RevMan 5.3 software were used to conduct network meta-analysis to analyze and explore the significance of TCM combined ST in immune regulation, efficacy and safety in clinical application. The probability value of the surface under the cumulative ranking curve was used to rank the processing studied. Results: A total of 25 studies involving 2,152 participants were included in the network meta-analysis, including six traditional Chinese medicine injections and seven proprietary Chinese medicines. The results showed that Dahuang Zhechong Wan and Kangai injection combined with ST were the best choices for immune regulation. Moreover, the Huaier granule was the best choice to reduce vascular endothelial growth factors. Conclusion: For patients with liver cancer, TCM combined with ST was better than that of ST alone and can significantly improve the immune function of patients as well as the efficacy and safety of treatment. However, given the limited sample size and methodological quality of the trials that we included in our study, more centralized and randomized controlled trials with a large sample size are required to verify our findings.
Collapse
Affiliation(s)
- Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Sun Q, Xiao L, Cui Z, Yang Y, Ma J, Huang Z, Zhang J, Chen J. 3,3'-Diindolylmethane improves antitumor immune responses of PD-1 blockade via inhibiting myeloid-derived suppressor cells. Chin Med 2022; 17:81. [PMID: 35773674 PMCID: PMC9245307 DOI: 10.1186/s13020-022-00638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background Immune checkpoint inhibitors that target programmed cell death protein 1 (PD-1) have obtained encouraging results, but a fraction of tumor patients failed to respond to anti-PD-1 treatment due to the existence of multiple immune suppressive elements such as myeloid-derived suppressor cells (MDSCs). Traditional Chinese medicine or natural products from medicinal plants could enhance immunity and may be helpful for cancer immunotherapy. As a digestive metabolite from cruciferous plants, 3,3′-diindolylmethane (DIM) has been widely used in chemotherapy, but its influence on cancer immunotherapy remains unclear. Here we investigate the function of DIM on MDSCs and examine the therapeutic effects of DIM in conjunction with PD-1 antibody against mouse tumors. Methods Flow cytometry analysis, Western blot analysis and qRT-PCR assay were used to examine the inhibitory effects and mechanisms of DIM on MDSCs in vitro and in vivo. The therapeutic effects of DIM on cancer immunotherapy by PD-1 antibody were evaluated in mouse models of breast cancer and melanoma tumor. Results DIM exerted the inhibitory effect on MDSCs via downregulating miR-21 level and subsequently activating PTEN/PIAS3-STAT3 pathways. Adoptive transfer of MDSCs impaired the therapeutic effects of DIM, indicating that the antitumor activity of DIM might be due to the suppression of MDSCs. Furthermore, in mouse models of breast cancer and melanoma tumor, the addition of DIM can enhance the therapeutic effect of PD-1 antibody through promoting T cells responses, and thereby inhibiting tumor growth. Conclusions Overall, the strategy based on the combination treatment of anti-PD-1 antibody and DIM may provide a new approach for cancer immunotherapy. Cruciferae plants-rich diet which contains high amount of DIM precursor may be beneficial for cancer patients that undergo the anti-PD-1 treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00638-z.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Lin Xiao
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Zhiying Cui
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Yaping Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Junting Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China. .,Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, 230032, Hefei, China.
| | - Zhen Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| | - Junfeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China
| | - Jiangning Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
15
|
Qu M, Han T, Chen X, Sun Q, Li Q, Zhao M. Exploring potential targets of Actinidia chinensis Planch root against hepatocellular carcinoma based on network pharmacology and molecular docking and development and verification of immune-associated prognosis features for hepatocellular carcinoma. J Gastrointest Oncol 2022; 13:1289-1307. [PMID: 35837167 DOI: 10.21037/jgo-22-398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the malignant tumors with the highest morbidity and mortality worldwide, and its prognosis remains a challenge. Actinidia chinensis Planch (ACP) root has good efficacy against HCC. This study aimed to explore the link between ACP and potential targets of HCC, and to develop a novel immune-based gene signature to predict HCC patient survival. Methods Transcriptome data and clinical information on HCC were obtained from The Cancer Genome Atlas (TCGA; HCC: 374, normal: 50) and International Cancer Genome Consortium (ICGC) database (HCC: 243, normal: 202). Combined with the 2,483 immune-related genes from the Immport database, we used the least absolute shrinkage and selection operator (LASSO) to construct a prognostic model. Patients were divided into high-risk and low-risk groups by the median of the risk scores of the TCGA cohort. Kaplan-Meier survival analysis and receiver operating characteristic (ROC) curves were used to estimate the predictability of the model in HCC prognosis, and carried out external validation based on ICGC cohort. We analyzed the correlation of this model with immune cells and immune checkpoint genes. Finally, molecular docking of these genes and the corresponding ACP components. Results We constructed a prognostic model composed of 3 immune-related genes [epidermal growth factor (EGF), baculoviral inhibitor of apoptosis repeat-containing protein 5 (BIRC5), and secreted phosphoprotein 1 (SPP1)]. And the high-risk group had a lower overall survival (OS) rate compared to the low-risk group (TCGA cohort: P=1.761e-05, ICGC cohort: P=8.716e-04). The outcomes of the AUC of ROC of prognostic risk model to predict for 1-, 2-, and 3-year OS: TCGA cohort: 0.749, 0.710, and 0.653 and ICGC cohort: 0.698, 0.736, and 0.753. Molecular docking results showed that quercetin had good binding activities with SPP1, BIRC5, and EGF, and ursolic acid (UA) and BIRC5 also had this feature. Conclusions Our study speculates that ACP root anti-HCC may be involved in the immune regulation of the body by targeting EGF, BIRC5 and SPP1, which possess great potential and value as early warning molecules for HCC. This model may provide a reference for individualized diagnosis and treatment for HCC patients.
Collapse
Affiliation(s)
- Meilin Qu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.,Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Tao Han
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoquan Chen
- Department of Integrated Traditional Chinese and Western Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qingqing Sun
- Three Departments of Convalescence, Lintong Rehabilitation and Recuperation Center, Lintong, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingfang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Li D, Xu KY, Zhao WP, Liu MF, Feng R, Li DQ, Bai J, Du WL. Chinese Medicinal Herb-Derived Carbon Dots for Common Diseases: Efficacies and Potential Mechanisms. Front Pharmacol 2022; 13:815479. [PMID: 35281894 PMCID: PMC8906921 DOI: 10.3389/fphar.2022.815479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.
Collapse
Affiliation(s)
- Dan Li
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun-yan Xu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei-peng Zhao
- Department of Traditional Chinese Medicine, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ming-feng Liu
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Feng
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - De-qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Bai
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-li Du
- Department of Pharmacy, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|