1
|
Xia J, Peng Z, Zhang M, Liao Q, Liu C, Deng X. MicroRNA-429 overexpression overcomes imatinib resistance of glioma cells by negatively regulating lysophosphatidic acid receptor 1. Neurol Res 2024; 46:1149-1159. [PMID: 39531542 DOI: 10.1080/01616412.2024.2423586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Glioma is one of the most aggressive and lethal malignancies in central nervous system. It has been reported that miR-429 is declined in glioma and functions as a tumor suppressor. Nonetheless, the potential role of miR-429 in drug resistance of glioma is still ambiguous. METHODS Stable imatinib-resistant lines U251-AR and T98G-AR were established using glioma cell lines U251 and T98G. Cell apoptosis and cycle were analyzed by flow cytometry, and CCK-8 assay was utilized to measure cell viability. Protein and RNA levels were tested with western blot and RT-qPCR. The predicted binding site was confirmed by dual luciferase reporter assay. RESULTS Imatinib-resistant U251-AR and T98G-AR cells presented lower level of miR-429 and higher level of LPAR1. MiR-429 overexpression obviously promoted imatinib sensitivity in glioma cells, indicated by the reduced IC50 value, facilitated cell apoptosis and cell cycle arrest at G0/G1 phase, and downregulated multidrug resistance-related proteins. LPAR1 was verified as a direct target of miR-429 and its expression was negatively regulated by miR-429. Additionally, overexpression of LPAR1 restrained the biological function of miR-429 on imatinib chemoresistance. CONCLUSION MiR-429 partly sensitized glioma cells to imatinib via downregulation LPAR1, which might provide an approach to overcome imatinib chemoresistance during glioma treatment.
Collapse
Affiliation(s)
- Jieyao Xia
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Zhengyang Peng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Meina Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Qiongqiong Liao
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Chubao Liu
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| | - Xiong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, P.R. China
| |
Collapse
|
2
|
Li W, Zhao X, Fu J, Cheng L. Identification of lysosome-related hub genes as potential biomarkers and immune infiltrations of moyamoya disease by multiple bioinformatics methods and machine-learning strategies. Heliyon 2024; 10:e34432. [PMID: 39104482 PMCID: PMC11298923 DOI: 10.1016/j.heliyon.2024.e34432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Background Moyamoya disease (MMD), characterized by chronic cerebrovascular pathology, poses a rare yet significant clinical challenge, associated with elevated rates of mortality and disability. Despite intensive research endeavors, the exact biomarkers driving its pathogenesis remain enigmatic. Methods The expression patterns of GSE189993 and GSE141022 were retrieved from the Gene Expression Omnibus (GEO) repository to procure differentially expressed genes (DEGs) between samples afflicted with MMD and those under control conditions. The Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine with Recursive Feature Elimination (SVM-RFE), and Random Forest (RF) algorithms were employed for identifying candidate diagnostic genes associated with MMD. Subsequently, these candidate genes underwent validation in an independent cohort (GSE157628). The CMAP database was ultimately employed to forecast drugs pertinent to MMD for clinical translation. Results A collective of 240 DEGs were discerned. Functional enrichment scrutiny unveiled the enrichment of the cholesterol metabolism pathway, salmonella infection pathway, and allograft rejection pathway within the MMD cohort. EPDR1, DENND3, and NCSTN emerged as discerned diagnostic biomarkers for MMD. The CMAP database was ultimately employed to scrutinize the ten most auspicious pharmaceutical compounds for managing MMD. Finally, after validation through in vitro experiments, EPDR1, DENND3, and NCSTN were identified as the key genes. Conclusion EPDR1, DENND3, and NCSTN have emerged as potential novel biomarkers for MMD. The involvement of T lymphocytes, neutrophilic granulocytes, dendritic cells, natural killer cells, and plasma cells could be pivotal in the pathogenesis and advancement of MMD.
Collapse
Affiliation(s)
- Wenyang Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiang Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinxing Fu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lei Cheng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
3
|
Yang F, Yan L, Ji J, Lou Y, Zhu J. HER2 puzzle pieces: Non-Coding RNAs as keys to mechanisms, chemoresistance, and clinical outcomes in Ovarian cancer. Pathol Res Pract 2024; 258:155335. [PMID: 38723327 DOI: 10.1016/j.prp.2024.155335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer (OC) presents significant challenges, characterized by limited treatment options and therapy resistance often attributed to dysregulation of the HER2 signaling pathway. Non-coding RNAs (ncRNAs) have emerged as key players in regulating gene expression in OC. This comprehensive review underscores the pivotal role of ncRNAs in modulating HER2 signaling, with a specific focus on their mechanisms, impact on chemoresistance, and prognostic/diagnostic implications. MicroRNAs, long non-coding RNAs, and circular RNAs have been identified as essential regulators in the modulation of the HER2 pathway. By directly targeting key components of the HER2 axis, these ncRNAs influence its activation and downstream signaling cascades. Dysregulated ncRNAs have been closely associated with chemoresistance, leading to treatment failures and disease progression in OC. Furthermore, distinct expression profiles of ncRNAs hold promise as reliable prognostic and diagnostic markers, facilitating personalized treatment strategies and enhancing disease outcome assessments. A comprehensive understanding of how ncRNAs intricately modulate HER2 signaling is imperative for the development of targeted therapies and the improvement of patient outcomes. The integration of ncRNA profiles into clinical practice has the potential to enhance prognostic and diagnostic accuracy in the management of ovarian cancer. Further research efforts are essential to validate the clinical utility of ncRNAs and elucidate their precise roles in the regulation of HER2 signaling. In conclusion, ncRNAs play a crucial role in governing HER2 signaling in ovarian cancer, impacting chemoresistance and providing valuable prognostic and diagnostic insights. The exploration of ncRNA-mediated HER2 modulation offers promising avenues for the development of personalized treatment approaches, ultimately advancing patient care and outcomes in OC.
Collapse
Affiliation(s)
- Fangwei Yang
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China.
| | - Lixiang Yan
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Junnan Ji
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Yunxia Lou
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| | - Jinlu Zhu
- Obstetrical Department, Yiwu Central Hospital, Yiwu, Zhejiang 322000, China
| |
Collapse
|
4
|
Zhang Y, Guan Y, Zheng X, Li C. Hypoxia-induced miR-181a-5p up-regulation reduces epirubicin sensitivity in breast cancer cells through inhibiting EPDR1/TRPC1 to activate PI3K/AKT signaling pathway. BMC Cancer 2024; 24:167. [PMID: 38308220 PMCID: PMC10835859 DOI: 10.1186/s12885-024-11906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Breast carcinoma (BC) ranks as a predominant malignancy and constitutes the second principal cause of mortality among women globally. Epirubicin stands as the drug of choice for BC therapeutics. Nevertheless, the emergence of chemoresistance has significantly curtailed its therapeutic efficacy. The resistance mechanisms to Epirubicin remain not entirely elucidated, yet they are conjectured to stem from diminished tumor vascular perfusion and resultant hypoxia consequent to Epirubicin administration. In our investigation, we meticulously scrutinized the Gene Expression Omnibus database for EPDR1, a gene implicated in hypoxia and Epirubicin resistance in BC. Subsequently, we delineated the impact of EPDR1 on cellular proliferation, motility, invasive capabilities, and interstitial-related proteins in BC cells, employing methodologies such as the CCK-8 assay, Transwell assay, and western blot analysis. Our research further unveiled that hypoxia-induced miR-181a-5p orchestrates the regulation of BC cell duplication, migration, invasion, and interstitial-related protein expression via modulation of EPDR1. In addition, we identified TRPC1, a gene associated with EPDR1 expression in BC, and substantiated that EPDR1 influences BC cellular dynamics through TRPC1-mediated modulation of the PI3K/AKT signaling cascade. Our findings underscore the pivotal role of EPDR1 in the development of BC. EPDR1 was found to be expressed at subdued levels in BC tissues, Epirubicin-resistant BC cells, and hypoxic BC cells. The overexpression of EPDR1 curtailed BC cell proliferation, motility, invasiveness, and the expression of interstitial-related proteins. At a mechanistic level, the overexpression of hypoxia-induced miR-181a-5p was observed to inhibit the EPDR1/TRPC1 axis, thereby activating the PI3K/AKT signaling pathway and diminishing the sensitivity to Epirubicin in BC cells. In summation, our study demonstrates that the augmentation of hypoxia-induced miR-181a-5p diminishes Epirubicin sensitivity in BC cells by attenuating EPDR1/TRPC1 expression, thereby invigorating the PI3K/AKT signaling pathway. This exposition offers a theoretical foundation for the application of Epirubicin in BC therapy, marking a significant contribution to the existing body of oncological literature.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China
| | - Yunping Guan
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China
| | - Xinyu Zheng
- Department of Breast Surgery, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China.
- Lab 1, Cancer Institute, The First Hospital of China Medical University, 155 North Nanjing Street, Shenyang, Liaoning, China.
| | - Chenyang Li
- Department of Breast Clinic, Shenyang Maternity and Child Health Hosital, No. 20, Yuanjiang Street, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Dzhugashvili E, Tamkovich S. Exosomal Cargo in Ovarian Cancer Dissemination. Curr Issues Mol Biol 2023; 45:9851-9867. [PMID: 38132461 PMCID: PMC10742327 DOI: 10.3390/cimb45120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among all gynecologic cancers and is characterized by early peritoneal spread. The growth and development of OC are associated with the formation of ascitic fluid, creating a unique tumor microenvironment. Understanding the mechanisms of tumor progression is crucial in identifying new diagnostic biomarkers and developing novel therapeutic strategies. Exosomes, lipid bilayer vesicles measuring 30-150 nm in size, are known to establish a crucial link between malignant cells and their microenvironment. Additionally, the confirmed involvement of exosomes in carcinogenesis enables them to mediate the invasion, migration, metastasis, and angiogenesis of tumor cells. Functionally active non-coding RNAs (such as microRNAs, long non-coding RNAs, circRNAs), proteins, and lipid rafts transported within exosomes can activate numerous signaling pathways and modify gene expression. This review aims to expand our understanding of the role of exosomes and their contents in OC carcinogenesis processes such as epithelial-mesenchymal transition (EMT), angiogenesis, vasculogenic mimicry, tumor cell proliferation, and peritoneal spread. It also discusses the potential for utilizing exosomal cargo to develop novel "liquid biopsy" biomarkers for early OC diagnosis.
Collapse
Affiliation(s)
- Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Li S, Yi Z, Li M, Zhu Z. Baicalein improves the chemoresistance of ovarian cancer through regulation of CirSLC7A6. J Ovarian Res 2023; 16:212. [PMID: 37940982 PMCID: PMC10631197 DOI: 10.1186/s13048-023-01285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE The present study aimed to investigate whether baicalein improves the sensitivity of resistant ovarian cancer cells to cisplatin. METHODS Transcriptomic sequencing and bioinformatics analysis were used to screen differentially expressed CirSLC7A6 in A2780 and A2780/CDDP cells. RT-qPCR was performed to examine the expression levels of CirSLC7A6, miR-2682-5p, and SLC7A6. Cell proliferation and apoptosis were examined using a Cell Counting Kit-8 assay and flow cytometry, and cell migration and invasion were analyzed using wound healing and Transwell assays. Cell suspensions were inoculated into the subcutaneous tissues of the bilateral interscapular region of nude mice. Saline, cisplatin, baicalein and cisplatin plus baicalein were intraperitoneally injected to observe the effects on tumor growth. Toxicity analyses in the liver and kidney were performed using H&E staining. RT-qPCR and immunohistochemistry were used to detect the expression of CirSLC7A6, miR-2682-5p, and SLC7A6 in tumor tissues, and western blot analysis was carried out to measure protein expression levels. RESULTS CirSLC7A6 was markedly upregulated in A2780/CDDP cells compared with the A2780 cells. CirSLC7A6 knockdown notably increased the expression of miR-2682-5p and decreased SLC7A6 expression. The rates of inhibition and apoptosis in the group treated with a combination of cisplatin and baicalein were significantly higher than those of the cisplatin and baicalein groups of A2780/CDDP shCirSLC7A6 cells. In A2780/CDDP shCirSLC7A6 cells, migration and invasion were significantly higher in the cisplatin and baicalein groups, compared with the combined treatment group. In the A2780/CDDP shCirSLC7A6 cell xenograft, the tumor weight of the combined treatment group was significantly lower than that of the cisplatin and baicalein groups. In addition, the combination of cisplatin and baicalein did not induce higher levels of toxicity in the liver or kidney. Baicalein alone and in combination with cisplatin notably reduced the expression of CirSLC7A6 and SLC7A6, and increased the expression of miR-2682-5p in the A2780/CDDP shCirSLC7A6 cell xenograft. In A2780/CDDP shCirSLC7A6 cells, the expression levels of P-Akt, P-mTOR, P-Erk, Bcl-2 and MMP2 were lower in the combined treatment group than in the control group. CONCLUSIONS Treatment with baicalein improved the sensitivity of ovarian cancer cells to cisplatin and inhibited cell proliferation, metastasis and tumor growth.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Zhihui Yi
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China
| | - Mingqing Li
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| | - Zhiling Zhu
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 Shenyang Road, Shanghai, 200090, China.
| |
Collapse
|
7
|
Zhang Y, Su Q, Xia W, Jia K, Meng D, Wang X, Ni X, Su Z. MiR-140-3p directly targets Tyro3 to regulate OGD/R-induced neuronal injury through the PI3K/Akt pathway. Brain Res Bull 2023; 192:93-106. [PMID: 36372373 DOI: 10.1016/j.brainresbull.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND AND PURPOSE MicroRNAs (miRNAs) are highly expressed in the central nervous system and play important roles in ischaemic stroke pathogenesis. However, the role of miRNAs in cerebral ischaemia-reperfusion injury remains unclear. Here, we investigated the role of miR-140-3p in regulating oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal injury in vitro to identify a new biomarker for research on ischaemic stroke. METHODS The differential expression of miR-140-3p and Tyro3 in OGD/R-exposed N2a cells was verified by qRT-PCR. N2a cells were transfected with miR-140-3p mimic, miR-140-3p inhibitor, Tyro3 or siTyro3, and qRT-PCR, Western blotting, the Cell counting kit-8 (CCK-8) assay, Hoechst 33342/PI staining and flow cytometry analyses were performed to measure miRNA, mRNA and protein expression; cell viability; and apoptosis. RESULTS OGD/R-exposed N2a cells exhibited increased miR-140-3p expression, decreased viability, reduced Bcl-2 protein expression and increased Bax and Caspase-3 protein expression and apoptosis; the miR-140-3p mimic markedly amplified these changes, exacerbating OGD/R-induced injury to N2a cells, while the miR-140-3p inhibitor reversed these changes and alleviated OGD/R-induced injury. OGD/R-exposed N2a cells expressed less Tyro3, and Tyro3 overexpression increased cell viability and Bcl-2 protein expression, reduced Bax and Caspase-3 protein expression, and alleviated OGD/R-induced injury. However, silencing Tyro3 reversed these changes and exacerbated OGD/R-induced injury. MiR-140-3p directly bound the Tyro3 mRNA 3'UTR. Rescue experiments indicated that the miR-140-3p mimic-induced changes in cell viability and protein expression were alleviated by Tyro3 overexpression and that the miR-140-3p inhibitor-induced changes in cell viability and protein expression were alleviated by silencing Tyro3. Tyro3 overexpression increased cell viability and PI3K and p-Akt protein expression, but these effects were weakened by the addition of LY294002. CONCLUSIONS MiR-140-3p directly targets Tyro3 to regulate cell viability and apoptosis of OGD/R-exposed N2a cells through the PI3K/Akt pathway, suggesting that miR-140-3p is a novel biomarker and therapeutic target for ischaemic stroke.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; Central Laboratory of the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Qian Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Wenbo Xia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Kejuan Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150001, Heilongjiang, China
| | - Delong Meng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Xunran Ni
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin 150001, China
| | - Zhiqiang Su
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China.
| |
Collapse
|
8
|
Pouliquen DL, Malloci M, Boissard A, Henry C, Guette C. Proteomes of Residual Tumors in Curcumin-Treated Rats Reveal Changes in Microenvironment/Malignant Cell Crosstalk in a Highly Invasive Model of Mesothelioma. Int J Mol Sci 2022; 23:ijms232213732. [PMID: 36430209 PMCID: PMC9691155 DOI: 10.3390/ijms232213732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Curcumin exhibits both immunomodulatory properties and anticarcinogenic effects which have been investigated in different experimental tumor models and cancer types. Its interactions with multiple signaling pathways have been documented through proteomic studies on malignant cells in culture; however, in vivo approaches are scarce. In this study, we used a rat model of highly invasive peritoneal mesothelioma to analyze the residual tumor proteomes of curcumin-treated rats in comparison with untreated tumor-bearing rats (G1) and provide insights into the modifications in the tumor microenvironment/malignant cell crosstalk. The cross-comparing analyses of the histological sections of residual tumors from two groups of rats given curcumin twice on days 21 and 26 after the tumor challenge (G2) or four times on days 7, 9, 11 and 14 (G3), in comparison with G1, identified a common increase in caveolin-1 which linked with significant abundance changes affecting 115 other proteins. The comparison of G3 vs. G2 revealed additional features for 65 main proteins, including an increase in histidine-rich glycoprotein and highly significant abundance changes for 22 other proteins regulating the tumor microenvironment, linked with the presence of numerous activated T cells. These results highlight new features in the multiple actions of curcumin on tumor microenvironment components and cancer cell invasiveness.
Collapse
Affiliation(s)
- Daniel L. Pouliquen
- Université d’Angers, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
- Correspondence: ; Tel.: +33-2-41352854
| | - Marine Malloci
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, F-44000 Nantes, France
| | - Alice Boissard
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Cécile Henry
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| | - Catherine Guette
- Université d’Angers, ICO, Inserm, CNRS, Nantes Université, CRCI2NA, F-49000 Angers, France
| |
Collapse
|